$ g++ Aho–Corasick.cpp $ a.out Keyword his appears from 1 to 3 Keyword he appears from 4 to 5 Keyword she appears from 3 to 5 Keyword hers appears from 4 to 7 ------------------ (program exited with code: 0) Press return to continue
Users Online
· Guests Online: 43
· Members Online: 0
· Total Members: 188
· Newest Member: meenachowdary055
· Members Online: 0
· Total Members: 188
· Newest Member: meenachowdary055
Forum Threads
Newest Threads
No Threads created
Hottest Threads
No Threads created
Latest Articles
Articles Hierarchy
C++ Program to Implement Aho-Corasick Algorithm for Pattern Searching
C++ Program to Implement Aho-Corasick Algorithm for Pattern Searching
In computer science, the Aho–Corasick string matching algorithm is a string searching algorithm, it is a kind of dictionary-matching algorithm that locates elements of a finite set of strings (the “dictionary”) within an input text. It matches all patterns simultaneously. The complexity of the algorithm is linear in the length of the patterns plus the length of the searched text plus the number of output matches. Note that because all matches are found, there can be a quadratic number of matches if every substring matches (e.g. dictionary = a, aa, aaa, aaaa and input string is aaaa).
Here is source code of the C++ Program to Implement Aho-Corasick Algorithm for String Matching. The C++ program is successfully compiled and run on a Linux system. The program output is also shown below.
-
using namespace std;
-
#include <algorithm>
-
#include <iostream>
-
#include <iterator>
-
#include <numeric>
-
#include <sstream>
-
#include <fstream>
-
#include <cassert>
-
#include <climits>
-
#include <cstdlib>
-
#include <cstring>
-
#include <string>
-
#include <cstdio>
-
#include <vector>
-
#include <cmath>
-
#include <queue>
-
#include <deque>
-
#include <stack>
-
#include <list>
-
#include <map>
-
#include <set>
-
-
#define foreach(x, v) for (typeof (v).begin() x=(v).begin(); x !=(v).end(); ++x)
-
#define For(i, a, b) for (int i=(a); i<(b); ++i)
-
#define D(x) cout << #x " is " << x << endl
-
-
const int MAXS = 6 * 50 + 10; // Max number of states in the matching machine.
-
// Should be equal to the sum of the length of all keywords.
-
-
const int MAXC = 26; // Number of characters in the alphabet.
-
-
int out[MAXS]; // Output for each state, as a bitwise mask.
-
int f[MAXS]; // Failure function
-
int g[MAXS][MAXC]; // Goto function, or -1 if fail.
-
-
int buildMatchingMachine(const vector<string> &words, char lowestChar = 'a',
-
char highestChar = 'z')
-
{
-
memset(out, 0, sizeof out);
-
memset(f, -1, sizeof f);
-
memset(g, -1, sizeof g);
-
int states = 1; // Initially, we just have the 0 state
-
for (int i = 0; i < words.size(); ++i)
-
{
-
const string &keyword = words[i];
-
int currentState = 0;
-
for (int j = 0; j < keyword.size(); ++j)
-
{
-
int c = keyword[j] - lowestChar;
-
if (g[currentState][c] == -1)
-
{ // Allocate a new node
-
g[currentState][c] = states++;
-
}
-
currentState = g[currentState][c];
-
}
-
out[currentState] |= (1 << i); // There's a match of keywords[i] at node currentState.
-
}
-
// State 0 should have an outgoing edge for all characters.
-
for (int c = 0; c < MAXC; ++c)
-
{
-
if (g[0][c] == -1)
-
{
-
g[0][c] = 0;
-
}
-
}
-
-
// Now, let's build the failure function
-
queue<int> q;
-
for (int c = 0; c <= highestChar - lowestChar; ++c)
-
{ // Iterate over every possible input
-
// All nodes s of depth 1 have f[s] = 0
-
if (g[0][c] != -1 and g[0][c] != 0)
-
{
-
f[g[0][c]] = 0;
-
q.push(g[0][c]);
-
}
-
}
-
while (q.size())
-
{
-
int state = q.front();
-
q.pop();
-
for (int c = 0; c <= highestChar - lowestChar; ++c)
-
{
-
if (g[state][c] != -1)
-
{
-
int failure = f[state];
-
while (g[failure][c] == -1)
-
{
-
failure = f[failure];
-
}
-
failure = g[failure][c];
-
f[g[state][c]] = failure;
-
out[g[state][c]] |= out[failure]; // Merge out values
-
q.push(g[state][c]);
-
}
-
}
-
}
-
-
return states;
-
}
-
int findNextState(int currentState, char nextInput, char lowestChar = 'a')
-
{
-
int answer = currentState;
-
int c = nextInput - lowestChar;
-
while (g[answer][c] == -1)
-
answer = f[answer];
-
return g[answer][c];
-
}
-
-
int main()
-
{
-
vector<string> keywords;
-
keywords.push_back("he");
-
keywords.push_back("she");
-
keywords.push_back("hers");
-
keywords.push_back("his");
-
string text = "ahishers";
-
buildMatchingMachine(keywords, 'a', 'z');
-
int currentState = 0;
-
for (int i = 0; i < text.size(); ++i)
-
{
-
currentState = findNextState(currentState, text[i], 'a');
-
if (out[currentState] == 0)
-
continue; // Nothing new, let's move on to the next character.
-
for (int j = 0; j < keywords.size(); ++j)
-
{
-
if (out[currentState] & (1 << j))
-
{ // Matched keywords[j]
-
cout << "Keyword " << keywords[j] << " appears from " << i
-
- keywords[j].size() + 1 << " to " << i << endl;
-
}
-
}
-
}
-
return 0;
-
}
Output:
Comments
No Comments have been Posted.
Post Comment
Please Login to Post a Comment.