Users Online

· Guests Online: 54

· Members Online: 0

· Total Members: 188
· Newest Member: meenachowdary055

Forum Threads

Newest Threads
No Threads created
Hottest Threads
No Threads created

Latest Articles

C++ Program to Find Independent Sets in a Graph by Graph Coloring

C++ Program to Find Independent Sets in a Graph by Graph Coloring

 

 

This is a C++ Program to find largest independent set by graph coloring. In graph theory, an independent set or stable set is a set of vertices in a graph, no two of which are adjacent. That is, it is a set I of vertices such that for every two vertices in I, there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in I. The size of an independent set is the number of vertices it contains. Independent sets have also been called internally stable sets. A maximal independent set is either an independent set such that adding any other vertex to the set forces the set to contain an edge or the set of all vertices of the empty graph.

 

Here is source code of the C++ Program to Find Independent Sets in a Graph by Graph Coloring. The C++ program is successfully compiled and run on a Linux system. The program output is also shown below.

  1. #include <iostream>
  2. #include <fstream>
  3. #include <string>
  4. #include <vector>
  5. using namespace std;
  6.  
  7. bool removable(vector<int> neighbor, vector<int> cover);
  8. int max_removable(vector<vector<int> > neighbors, vector<int> cover);
  9. vector<int> procedure_1(vector<vector<int> > neighbors, vector<int> cover);
  10. vector<int> procedure_2(vector<vector<int> > neighbors, vector<int> cover,
  11.         int k);
  12. int cover_size(vector<int> cover);
  13. ifstream infile("graph.txt");
  14. ofstream outfile("sets.txt");
  15.  
  16. int main()
  17. {
  18.     //Read Graph
  19.     cout << "Independent Set Algorithm." << endl;
  20.     int n, i, j, k, K, p, q, r, s, min, edge, counter = 0;
  21.     infile >> n;
  22.     vector<vector<int> > graph;
  23.     for (i = 0; i < n; i++)
  24.     {
  25.         vector<int> row;
  26.         for (j = 0; j < n; j++)
  27.         {
  28.             infile >> edge;
  29.             row.push_back(edge);
  30.         }
  31.         graph.push_back(row);
  32.     }
  33.     //Find Neighbors
  34.     vector<vector<int> > neighbors;
  35.     for (i = 0; i < graph.size(); i++)
  36.     {
  37.         vector<int> neighbor;
  38.         for (j = 0; j < graph[i].size(); j++)
  39.             if (graph[i][j] == 1)
  40.                 neighbor.push_back(j);
  41.         neighbors.push_back(neighbor);
  42.     }
  43.     cout << "Graph has n = " << n << " vertices." << endl;
  44.     //Read maximum size of Independent Set wanted
  45.     cout << "Find an Independent Set of size at least k = ";
  46.     cin >> K;
  47.     k = n - K;
  48.     //Find Independent Sets
  49.     bool found = false;
  50.     cout << "Finding Independent Sets..." << endl;
  51.     min = n + 1;
  52.     vector<vector<int> > covers;
  53.     vector<int> allcover;
  54.     for (i = 0; i < graph.size(); i++)
  55.         allcover.push_back(1);
  56.     for (i = 0; i < allcover.size(); i++)
  57.     {
  58.         if (found)
  59.             break;
  60.         counter++;
  61.         cout << counter << ". ";
  62.         outfile << counter << ". ";
  63.         vector<int> cover = allcover;
  64.         cover[i] = 0;
  65.         cover = procedure_1(neighbors, cover);
  66.         s = cover_size(cover);
  67.         if (s < min)
  68.             min = s;
  69.         if (s <= k)
  70.         {
  71.             outfile << "Independent Set (" << n - s << "): ";
  72.             for (j = 0; j < cover.size(); j++)
  73.                 if (cover[j] == 0)
  74.                     outfile << j + 1 << " ";
  75.             outfile << endl;
  76.             cout << "Independent Set Size: " << n - s << endl;
  77.             covers.push_back(cover);
  78.             found = true;
  79.             break;
  80.         }
  81.         for (j = 0; j < n - k; j++)
  82.             cover = procedure_2(neighbors, cover, j);
  83.         s = cover_size(cover);
  84.         if (s < min)
  85.             min = s;
  86.         outfile << "Independent Set (" << n - s << "): ";
  87.         for (j = 0; j < cover.size(); j++)
  88.             if (cover[j] == 0)
  89.                 outfile << j + 1 << " ";
  90.         outfile << endl;
  91.         cout << "Independent Set Size: " << n - s << endl;
  92.         covers.push_back(cover);
  93.         if (s <= k)
  94.         {
  95.             found = true;
  96.             break;
  97.         }
  98.     }
  99.     //Pairwise Intersections
  100.     for (p = 0; p < covers.size(); p++)
  101.     {
  102.         if (found)
  103.             break;
  104.         for (q = p + 1; q < covers.size(); q++)
  105.         {
  106.             if (found)
  107.                 break;
  108.             counter++;
  109.             cout << counter << ". ";
  110.             outfile << counter << ". ";
  111.             vector<int> cover = allcover;
  112.             for (r = 0; r < cover.size(); r++)
  113.                 if (covers[p][r] == 0 && covers[q][r] == 0)
  114.                     cover[r] = 0;
  115.             cover = procedure_1(neighbors, cover);
  116.             s = cover_size(cover);
  117.             if (s < min)
  118.                 min = s;
  119.             if (s <= k)
  120.             {
  121.                 outfile << "Independent Set (" << n - s << "): ";
  122.                 for (j = 0; j < cover.size(); j++)
  123.                     if (cover[j] == 0)
  124.                         outfile << j + 1 << " ";
  125.                 outfile << endl;
  126.                 cout << "Independent Set Size: " << n - s << endl;
  127.                 found = true;
  128.                 break;
  129.             }
  130.             for (j = 0; j < k; j++)
  131.                 cover = procedure_2(neighbors, cover, j);
  132.             s = cover_size(cover);
  133.             if (s < min)
  134.                 min = s;
  135.             outfile << "Independent Set (" << n - s << "): ";
  136.             for (j = 0; j < cover.size(); j++)
  137.                 if (cover[j] == 0)
  138.                     outfile << j + 1 << " ";
  139.             outfile << endl;
  140.             cout << "Independent Set Size: " << n - s << endl;
  141.             if (s <= k)
  142.             {
  143.                 found = true;
  144.                 break;
  145.             }
  146.         }
  147.     }
  148.     if (found)
  149.         cout << "Found Independent Set of size at least " << K << "." << endl;
  150.     else
  151.         cout << "Could not find Independent Set of size at least " << K << "."
  152.                 << endl << "Maximum Independent Set size found is " << n - min
  153.                 << "." << endl;
  154.     cout << "See sets.txt for results." << endl;
  155.     system("PAUSE");
  156.     return 0;
  157. }
  158.  
  159. bool removable(vector<int> neighbor, vector<int> cover)
  160. {
  161.     bool check = true;
  162.     for (int i = 0; i < neighbor.size(); i++)
  163.         if (cover[neighbor[i]] == 0)
  164.         {
  165.             check = false;
  166.             break;
  167.         }
  168.     return check;
  169. }
  170.  
  171. int max_removable(vector<vector<int> > neighbors, vector<int> cover)
  172. {
  173.     int r = -1, max = -1;
  174.     for (int i = 0; i < cover.size(); i++)
  175.     {
  176.         if (cover[i] == 1 && removable(neighbors[i], cover) == true)
  177.         {
  178.             vector<int> temp_cover = cover;
  179.             temp_cover[i] = 0;
  180.             int sum = 0;
  181.             for (int j = 0; j < temp_cover.size(); j++)
  182.                 if (temp_cover[j] == 1 && removable(neighbors[j], temp_cover)
  183.                         == true)
  184.                     sum++;
  185.             if (sum > max)
  186.             {
  187.                 max = sum;
  188.                 r = i;
  189.             }
  190.         }
  191.     }
  192.     return r;
  193. }
  194.  
  195. vector<int> procedure_1(vector<vector<int> > neighbors, vector<int> cover)
  196. {
  197.     vector<int> temp_cover = cover;
  198.     int r = 0;
  199.     while (r != -1)
  200.     {
  201.         r = max_removable(neighbors, temp_cover);
  202.         if (r != -1)
  203.             temp_cover[r] = 0;
  204.     }
  205.     return temp_cover;
  206. }
  207.  
  208. vector<int> procedure_2(vector<vector<int> > neighbors, vector<int> cover,
  209.         int k)
  210. {
  211.     int count = 0;
  212.     vector<int> temp_cover = cover;
  213.     int i = 0;
  214.     for (int i = 0; i < temp_cover.size(); i++)
  215.     {
  216.         if (temp_cover[i] == 1)
  217.         {
  218.             int sum = 0, index;
  219.             for (int j = 0; j < neighbors[i].size(); j++)
  220.                 if (temp_cover[neighbors[i][j]] == 0)
  221.                 {
  222.                     index = j;
  223.                     sum++;
  224.                 }
  225.             if (sum == 1 && cover[neighbors[i][index]] == 0)
  226.             {
  227.                 temp_cover[neighbors[i][index]] = 1;
  228.                 temp_cover[i] = 0;
  229.                 temp_cover = procedure_1(neighbors, temp_cover);
  230.                 count++;
  231.             }
  232.             if (count > k)
  233.                 break;
  234.         }
  235.     }
  236.     return temp_cover;
  237. }
  238.  
  239. int cover_size(vector<int> cover)
  240. {
  241.     int count = 0;
  242.     for (int i = 0; i < cover.size(); i++)
  243.         if (cover[i] == 1)
  244.             count++;
  245.     return count;
  246. }

Output:

$ g++ LargestIndependentSetGraphColoring.cpp
$ a.out
 
graph.txt:
4
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0
 
set.txt:
Independent Set ( 1 ): 2
------------------
(program exited with code: 0)
Press return to continue

 

Comments

No Comments have been Posted.

Post Comment

Please Login to Post a Comment.

Ratings

Rating is available to Members only.

Please login or register to vote.

No Ratings have been Posted.
Render time: 0.67 seconds
10,818,425 unique visits