05 SQUARE ROOTS AND CUBE ROOTS EXAMPLES
Posted by Superadmin on September 08 2016 19:02:43

Ex. 1. Evaluate √6084 by factorization method .

Sol.     Method: Express the given number as the product of prime factors.           

            Now, take the product of these prime factors choosing one out of              

            every pair of the same primes. This product gives the square root               

            of the given number.                                                                                

 

2 6084
2 3042
3 1521
3 507
13 169
  13

\ √6084 = (2 x 3 x 13) = 78.       

Thus, resolving 6084 into prime factors, we get:                                                      

6084 = 22 x 32 x 132                                                                                                            

 

 

Ex. 2. Find the square root of 1471369.                                                   

Sol.     Explanation: In the given number, mark off the digits              1  1471369 (1213

in pairs starting from the unit's digit. Each pair and                                   1             

the remaining one digit is called a period.                                          22     47

Now, 12 = 1. On subtracting, we get 0 as remainder.                                  44

Now, bring down the next period i.e., 47.                                          241      313

Now, trial divisor is 1 x 2 = 2 and trial dividend is 47.                                   241

So, we take 22 as divisor and put 2 as quotient.                              2423       7269

The remainder is 3.                                                                                        7269

Next, we bring down the next period which is 13.                                               x

Now, trial divisor is 12 x 2 = 24 and trial dividend is

313. So, we take 241 as dividend and 1 as quotient.

The remainder is 72. ­

Bring down the next period i.e., 69.

Now, the trial divisor is 121 x 2 = 242 and the trial

dividend is 7269. So, we take 3as quotient and 2423

as divisor. The remainder is then zero.

Hence, √1471369 = 1213.

 

Ex. 3. Evaluate: √248 + √51 + √ 169 .

Sol.     Given expression = √248 + √51 + 13 = √248 + √64    = √ 248 + 8 = √256 = 16.

 

Ex. 4. If a * b * c = √(a + 2)(b + 3) / (c + 1), find the value of 6 * 15 * 3.

Sol.      6 * 15 * 3 = √(6 + 2)(15 + 3) / (3 + 1) = √8 * 18 / 4 = √144 / 4 = 12 / 4 = 3.

Ex. 5. Find the value of √25/16.

Sol.    √ 25 / 16   = √ 25 / √ 16 = 5 / 4

 

 

Ex. 6. What is the square root of 0.0009?

Sol.      √0.0009= √ 9 / 1000  = 3 / 100 = 0.03.

 

Ex. 7. Evaluate √175.2976.

Sol.      Method: We make even number of decimal places              1   175.2976 (13.24  

by affixing a zero, if necessary. Now, we mark off                   1

periods and extract the square root as shown.                     23     75            

                                                                                                      69

\√175.2976 = 13.24                                                         262       629

                                                                                                                    524

                                                                                                     2644       10576

                                                                                                                    10576

                                                                                                                        x

 

 

Ex. 8. What will come in place of question mark in each of the following questions?

(i) √32.4 / ?  = 2                       (ii) √86.49 + √ 5 + ( ? )2 = 12.3.

Sol.      (i) Let √32.4 / x = 2. Then, 32.4/x = 4 <=> 4x = 32.4 <=> x = 8.1.

                     

(ii) Let √86.49 + √5 + x2 = 12.3.

      Then, 9.3 + √5+x2 = 12.3 <=> √5+x= 12.3 - 9.3 = 3

      <=> 5 + x2 = 9   <=> x2 = 9 - 5= 4   <=>   x = √4 = 2.

 

 

Ex.9. Find the value of √ 0.289 / 0.00121.

           
           

 

 

Sol.      √0.289 / 0.00121 = √0.28900/0.00121 = √28900/121 = 170 / 11.

 

 
   

 

 

Ex.10. If √1 + (x / 144) = 13 / 12, the find the value of x.

 

Sol.      √1 + (x / 144) = 13 / 12 Þ ( 1 + (x / 144)) = (13 / 12 )2 = 169 / 144

  Þx / 144 = (169 / 144) - 1

  Þx / 144 = 25/144 Þ x = 25.

 

Ex. 11. Find the value of √3 up to three places of decimal.

Sol.                

  1    3.000000   (1.732

                                1

27    200

189

                      343      1100

                                  1029

                    3462          7100

6924                          \√3 = 1.732.

 

 

 

Ex. 12. If √3 = 1.732, find the value of √192 - 1 √48 - √75 correct to 3 places

                                                                            2                        

of decimal.                                                                                     (S.S.C. 2004)

Sol.     192 - (1 / 2)√48 - √75 = √64 * 3 - (1/2) √ 16 * 3  - √ 25 * 3

                                                =8√3 - (1/2) * 4√3 - 5√3

                                                =3√3 - 2√3 = √3 = 1.732

 
   

 

 

Ex. 13. Evaluate: √(9.5 * 0.0085 * 18.9) / (0.0017 * 1.9 * 0.021)

Sol.      Given exp. = √(9.5 * 0.0085 * 18.9) / (0.0017 * 1.9 * 0.021)

            Now, since the sum of decimal places in the numerator and denominator under the            radical sign is the same, we remove the decimal.

\        Given exp = √(95 * 85 * 18900) / (17 * 19 * 21) = √ 5 * 5 * 900  = 5 * 30 = 150.

 

Ex. 14. Simplify: √ [( 12.1 )2 - (8.1)2] / [(0.25)2 + (0.25)(19.95)]

Sol.      Given exp. = √ [(12.1 + 8.1)(12.1 - 8.1)] / [(0.25)(0.25 + 19.95)]

 

                              =√ (20.2 * 4) /( 0.25 * 20.2)   = √ 4 / 0.25 = √400 / 25 = √16 = 4.

Ex. 15. If x = 1 + √2 and y = 1 - √2, find the value of (x2 + y2).

Sol.      x2 + y2 = (1 + √2)2 + (1 - √2)2 = 2[(1)2 + (√2)2] = 2 * 3 = 6.

 

Ex. 16. Evaluate: √0.9 up to 3 places of decimal.

Sol.                 

9    0.900000(0.948

         81

184         900

736

                  1888         16400

                                   15104                             \√0.9 = 0.948

 

 

Ex.17. If √15 = 3.88, find the value of √ (5/3).

Sol.      √ (5/3) = √(5 * 3) / (3 * 3)  = √15 / 3 = 3.88 / 3 = 1.2933…. = 1.293.

 

Ex. 18. Find the least square number which is exactly divisible by 10,12,15 and 18.

Sol.      L.C.M. of 10, 12, 15, 18 = 180. Now, 180 = 2 * 2 * 3 * 3 *5 = 22 * 32 * 5.

            To make it a perfect square, it must be multiplied by 5.

\         Required number = (22 * 32 * 52) = 900.

 

Ex. 19. Find the greatest number of five digits which is a perfect square.

(R.R.B. 1998)

Sol.      Greatest number of 5 digits is 99999.

                                                    3    99999(316

      9 

                                                  61      99

                                                            61

626      3899

           3756

                                                             143

\                  Required number == (99999 - 143) = 99856.

 

Ex. 20. Find the smallest number that must be added to 1780 to make it a perfect

square.

Sol.

                                    4    1780 (42

                                          16

82      180         

164

            16

 
   

 

 

      \               Number to be added = (43)2 - 1780 = 1849 - 1780 = 69.

 

Ex. 21. √2 = 1.4142, find the value of √2 / (2 + √2).

Sol.      √2 / (2 + √2) = √2 / (2 + √2) * (2 - √2) / (2 - √2) = (2√2 – 2) / (4 – 2)

                                 = 2(√2 – 1) / 2 = √2 – 1 = 0.4142.

 

 

22. If x = (√5 + √3) / (√5 - √3) and y = (√5 - √3) / (√5 + √3), find the value of (x+ y2).

Sol.     

x = [(√5 + √3) / (√5 - √3)] * [(√5 + √3) / (√5 + √3)] = (√5 + √3)2 / (5 - 3)

   =(5 + 3 + 2√15) / 2 = 4 + √15.        

            y = [(√5 - √3) / (√5 + √3)] * [(√5 - √3) / (√5 - √3)] = (√5 - √3)2 / (5 - 3)

               =(5 + 3 - 2√15) / 2 = 4 - √15.

\         x2 + y2 = (4 + √15)2 + (4 - √15)2 = 2[(4)2 + (√15)2] = 2 * 31 = 62.

 

 

Ex. 23. Find the cube root of 2744.

Sol.    Method: Resolve the given number as the product                 2    2744

          of prime factors and take the product of prime                        2    1372

           factors, choosing one out of three of the same                        2      686         

           prime factors. Resolving 2744 as the product of                     7      343

           prime factors, we get:                                                              7  ­      49

                                                                                                                       7

           2744 = 23 x 73.                                                                            

\      3√2744= 2 x 7 = 14.

 

 

Ex. 24. By what least number 4320 be multiplied to obtain a number which is a perfect cube?

Sol.      Clearly, 4320 = 23 * 33 * 22 * 5.

            To make it a perfect cube, it must be multiplied by 2 * 52 i.e,50.