Inorder Traversal : 15 20 25 33 43 45 67 67 80 91 99 Preorder Traversal : 20 15 25 45 43 33 67 80 67 99 91 Postorder Traversal : 15 33 43 67 91 99 80 67 45 25 20
Here is source code of the C# Program to Implement Binary Search Tree using Linked List. The C# program is successfully compiled and executed with Microsoft Visual Studio. The program output is also shown below.
/*
* C# Program to Implement Binary Search Tree using Linked List
*/
using System;
using System.Collections.Generic;
using System.Text;
namespace TreeSort
{
class Node
{
public int item;
public Node leftc;
public Node rightc;
public void display()
{
Console.Write("[");
Console.Write(item);
Console.Write("]");
}
}
class Tree
{
public Node root;
public Tree()
{
root = null;
}
public Node ReturnRoot()
{
return root;
}
public void Insert(int id)
{
Node newNode = new Node();
newNode.item = id;
if (root == null)
root = newNode;
else
{
Node current = root;
Node parent;
while (true)
{
parent = current;
if (id < current.item)
{
current = current.leftc;
if (current == null)
{
parent.leftc = newNode;
return;
}
}
else
{
current = current.rightc;
if (current == null)
{
parent.rightc = newNode;
return;
}
}
}
}
}
public void Preorder(Node Root)
{
if (Root != null)
{
Console.Write(Root.item + " ");
Preorder(Root.leftc);
Preorder(Root.rightc);
}
}
public void Inorder(Node Root)
{
if (Root != null)
{
Inorder(Root.leftc);
Console.Write(Root.item + " ");
Inorder(Root.rightc);
}
}
public void Postorder(Node Root)
{
if (Root != null)
{
Postorder(Root.leftc);
Postorder(Root.rightc);
Console.Write(Root.item + " ");
}
}
}
class Program
{
static void Main(string[] args)
{
Tree theTree = new Tree();
theTree.Insert(20);
theTree.Insert(25);
theTree.Insert(45);
theTree.Insert(15);
theTree.Insert(67);
theTree.Insert(43);
theTree.Insert(80);
theTree.Insert(33);
theTree.Insert(67);
theTree.Insert(99);
theTree.Insert(91);
Console.WriteLine("Inorder Traversal : ");
theTree.Inorder(theTree.ReturnRoot());
Console.WriteLine(" ");
Console.WriteLine();
Console.WriteLine("Preorder Traversal : ");
theTree.Preorder(theTree.ReturnRoot());
Console.WriteLine(" ");
Console.WriteLine();
Console.WriteLine("Postorder Traversal : ");
theTree.Postorder(theTree.ReturnRoot());
Console.WriteLine(" ");
Console.ReadLine();
}
}
}
Here is the output of the C# Program:
Inorder Traversal : 15 20 25 33 43 45 67 67 80 91 99 Preorder Traversal : 20 15 25 45 43 33 67 80 67 99 91 Postorder Traversal : 15 33 43 67 91 99 80 67 45 25 20