Enter Number Of Rows And Columns Of Matrices A and B : 3 3 Enter the First Matrix : 1 2 3 2 3 4 3 4 5 Matrix A : 1 2 3 2 3 4 3 4 5 Setting Zero to illustrate Lower Triangular Matrix : 1 0 0 2 3 0 3 4 5
This is a C# Program to display a lower triangular matrix.
This C# Program Displays Lower Triangular Matrix.
A square matrix is lower triangular matrix if all its entries above the main diagonal are zero.
Here is source code of the C# Program to Display Lower Triangular Matrix. The C# program is successfully compiled and executed with Microsoft Visual Studio. The program output is also shown below.
/* * C# Program to Display Lower Triangular Matrix */ using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ConsoleApplication8 { class Program { int x; public static void Main(string[] args) { int m, n, i, j; Console.Write("Enter Number Of Rows And Columns Of Matrices A and B : "); m = Convert.ToInt16(Console.ReadLine()); n = Convert.ToInt16(Console.ReadLine()); int[,] A = new int[10, 10]; Console.Write("\nEnter The First Matrix : "); for (i = 0; i < m; i++) { for (j = 0; j < n; j++) { A[i, j] = Convert.ToInt16(Console.ReadLine()); } } Console.Clear(); Console.WriteLine("\nMatrix A : "); for (i = 0; i < m; i++) { for (j = 0; j < n; j++) { Console.Write(A[i, j] + "\t"); } Console.WriteLine(); } Console.WriteLine("\n Setting Zero to illustrate " + "Lower Triangular Matrix\n"); for (i = 0; i < m; i++) { Console.Write("\n"); for (j = 0; j < 3; j++) { if (i >= j) Console.Write(A[i, j] + "\t"); else Console.Write("0\t"); } } Console.ReadLine(); } } }
In this C# program, we are reading the order of the matrix row and column using ‘m’ and ‘n’ variables respectively. Using for loop we are entering the coefficient value of the matrix to the variable A[i,j] to the index of m*n matrix. To display lower triangular matrix two for loops are used.
Enter Number Of Rows And Columns Of Matrices A and B : 3 3 Enter the First Matrix : 1 2 3 2 3 4 3 4 5 Matrix A : 1 2 3 2 3 4 3 4 5 Setting Zero to illustrate Lower Triangular Matrix : 1 0 0 2 3 0 3 4 5