Learn How to Build Intelligent Data Applications With Amazon Web Services AWS
Posted by Superadmin on August 27 2019 01:32:52

Learn How to Build Intelligent Data Applications With Amazon Web Services AWS

 

Understanding and Using AWS Products and Services: AWS Data Pipeline, Kinesis Analytics, RDS and Redshift Databases, and Amazon Machine Learning

 

By 

This course shows you how to use a range of AWS services to create intelligent end-to-end applications that incorporate ingestion, storage, preprocessing, machine learning (ML), and connectivity to an application client or server. The course is designed for data scientists looking for clear instruction on how to deploy locally developed ML applications to the AWS platform, and for developers who want to add machine learning capabilities to their applications using AWS services. Prerequisites include: Basic awareness of Amazon Simple Storage Service (S3), Elastic Compute Cloud (EC2), and Amazon Elastic MapReduce; as well as some knowledge of ML concepts like classification and regression analysis, model types, training and performance measures; and a general understanding of Python.

John Hearty is a data scientist with Relic Entertainment who specializes in using Amazon Web Services to develop data infrastructure and analytics solutions. He is the author or co-author of three highly regarded books on machine learning (e.g., Packt Publishing's "Advanced Machine Learning with Python") and holds a Master's degree in Computer Science from Liverpool John Moores University.

John Hearty

Publisher: Infinite Skills

Release Date: July 2017

Duration: 3 hours 23 minutes

 

 

Table of Contents

Chapter: Introduction

 

Welcome To The Course 07m 39s

Introducing The Author 01m 36s

 

Chapter: Introduction To Tools And Processes

 

Introducing Intelligent Application Architectures 11m 25s

Introduction To Key Tools 04m 44s

Introducing The Project Directory Structure 03m 42s

Introducing Project Workflow 02m 7s

 

 

Chapter: Deploying Our First Automated Application

 

Designing A Data Partitionin  Application 04m 50s

Creating Our ETL Pipeline Part - 1 03m 30s

Creating Our ETL Pipeline Part - 2 10m 46s

Reviewing Our Data ETL Application 03m 34s

 

Chapter: Deploying An Automated Machine Learning Algorithm

 

Designing A Machine Learning Application 04m 48s

Deploying Our Machine Learning Application Part - 1 07m 18s

Deploying Our Machine Learning Application Part - 2 07m 10s

Reviewing Our Machine Learning Application 08m 6s

 

Chapter: Integrating A Database Layer Designing Database Layer Application 04m 17s

Loading Data Into Redshift Part - 1 05m 30s

Loading Data Into Redshift Part - 2 11m 33s

Loading Data Into RDS Part - 1 05m 50s

Loading Data Into RDS Part - 2 03m 0s

Reviewing Our Database Layer Application Integration 04m 4s

 

 

Chapter: Integrating Smart Stream Ingestion

 

Designing A Streaming Data Ingestion Application 04m 43s

Configuring Kinesis Data Generator Part - 1 03m 57s

Configuring Kinesis Data Generator Part - 2 04m 28s

Creating Kinesis Streaming Analytics Applications Part - 1 05m 44s

Creating Kinesis Streaming Analytics Applications Part - 2 05m 40s

Creating Kinesis Streaming Analytics Applications Part - 3 11m 44s

Reviewing Kinesis Analytics 03m 50s

Chapter: Creating Machine Learning Endpoints With Amazon Machine Learning

 

Introducing The Designing of a Amazon Machine Learning Application 04m 16s

Preparing Datasets For Amazon Machine Learning 07m 58s

Deploying Models Against Amazon Machine Learning 09m 36s

Evaluating Our Amazon Machine Learning Models 09m 3s

Calling A Real-Time Prediction Endpoint Using The Amazon ML API 05m 25s

Reviewing Amazon Machine Learning Solution 06m 5s

Chapter: Wrapping Up

 

Wrapping Up 05m 28s

 

 

 

 


01 Introduction



00001 Welcome_To_The_Course
00002 Introducing_The_Author



02 Introduction To Tools And Processes



 
 
 
 
00003 Introducing_Intelligent_Application_Architectures
00004 Introduction_To_Key_Tools
00005 Introducing_The_Project_Directory_Structure
00006 Introducing_Project_Workflow



03 Deploying Our First Automated Application



 
 
 
 
00007 Designing_A_Data_Partitioning_Application
00008 Creating_Our_ETL_Pipeline_Part_-_1
00009 Creating_Our_ETL_Pipeline_Part_-_2
00010 Reviewing_Our_Data_ETL_Application



04 Deploying An Automated Machine Learning Algorithm



4 - 3._Working_with_Projects
 
 
 
 
00011 Designing_A_Machine_Learning_Application
00012 Deploying_Our_Machine_Learning_Application_Part_-_1
00013 Deploying_Our_Machine_Learning_Application_Part_-_2
00014 Reviewing_Our_Machine_Learning_Application



05 Integrating A Database Layer Designing Database Layer Application



 
 
 
 
00015 Designing_Database_Layer_Application
00016 Loading_Data_Into_Redshift_Part_-_1
00017 Loading_Data_Into_Redshift_Part_-_2
00018 Loading_Data_Into_RDS_Part_-_1
 
 
00019 Loading_Data_Into_RDS_Part_-_2
00020 Reviewing_Our_Database_Layer_Application_Integration



06 Integrating Smart Stream Ingestion



 
 
 
 
00021 Designing_A_Streaming_Data_Ingestion_Application
00022 Configuring_Kinesis_Data_Generator_Part_-_1
00023 Configuring_Kinesis_Data_Generator_Part_-_2
00024 Creating_Kinesis_Streaming_Analytics_Applications_Part_-_1
 
 
 
00025 Creating_Kinesis_Streaming_Analytics_Applications_Part_-_2
00026 Creating_Kinesis_Streaming_Analytics_Applications_Part_-_3
00027 Reviewing_Kinesis_Analytics



07 Creating Machine Learning Endpoints With Amazon Machine Learning



 
 
 
 
00028 Introducing_The_Designing_of_a_Amazon_Machine_Learning_Application
00029 Preparing_Datasets_For_Amazon_Machine_Learning
00030 Deploying_Models_Against_Amazon_Machine_Learning
00031 Evaluating_Our_Amazon_Machine_Learning_Models
 
 
00032 Calling_A_Real-Time_Prediction_Endpoint_Using_The_Amazon_ML_API
00033 Reviewing_Amazon_Machine_Learning_Solution



08 Wrapping Up



 
00034 Wrapping_Up