

Apache Mahout
Cookbook

A fast, fresh, developer-oriented dive into the world of
Apache Mahout

Piero Giacomelli

 BIRMINGHAM - MUMBAI

Apache Mahout Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1181213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-802-4

www.packtpub.com

Cover Image by Faiz Fattohi (faizfattohi@gmail.com)

Credits

Author
Piero Giacomelli

Reviewers
Nicolas Gapaillard

Vignesh Prajapati

Shannon Quinn

Acquisition Editor
Usha Iyer

Commissioning Editor
Llewellyn Rozario

Lead Technical Editor
Amey Varangaonkar

Technical Editors
Sharvari Baet

Mrunal Chavan

Venu Manthena

Amit Singh

Project Coordinator
Shiksha Chaturvedi

Copy Editors
Alisha Aranha

Janbal Dharmaraj

Deepa Nambiar

Karuna Narayanan

Kirti Pai

Adithi Shetty

Laxmi Subraminian

Proofreaders
Ameesha Green

Maria Gould

Indexer
Mariammal Chettiyar

Graphics
Ronak Dhruv

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Author

Piero Giacomelli started playing with computers back in 1986 when he received his first
PC (a commodore 64). Despite his love for computers, he graduated in Mathematics, entered
the professional software industry in 1997, and started using Java.

He has been involved in a lot of software projects using Java, .NET, and PHP. He is not only
a great fan of JBoss and Apache technologies, but also uses Microsoft technologies without
moral issues.

He has worked in many different industrial sectors, such as aerospace, ISP, textile and plastic
manufacturing, and e-health association, both as a software developer and as an IT manager.

He has also been involved in many EU research-funded projects in FP7 EU programs, such as
CHRONIOUS, I-DONT-FALL, FEARLESS, and CHROMED.

In recent years, he has published some papers on scientific journals and has been
awarded two best paper awards by the International Academy, Research and Industry
Association (IARIA).

In 2012, he published HornetQ Messaging Developer's Guide, Packt Publishing, which is a
standard reference book for the Apache HornetQ Framework.

He is married with two kids, and in his spare time, he regresses to his infancy ages to play
with toys and his kids.

Acknowledgments

I would like to thank my family for supporting me during the exciting yet stressful months in
which I wrote this book.

Thanks to my wife Michela, who forces me to become a better person everyday and my
mother, Milena, who did the same before marriage. Also thanks to Lia and Roberto who
greatly helped us every time we needed their help.

A special acknowledgment to the entire Packt Publishing editorial team. Thanks to Gaurav
Thingalaya, Amit Singh, Venu Manthena, Shiksha Chaturvedi, Llewellyn F. Rozario, Amey
Varangaonkar, Angel Jathanna, and Abhijit Suvarna, as they have been very patient with me
even when they had no reason for being so kind.

While I was writing this book, I also moved to a new job, so this is the right place to thank
Giuliano Bedeschi. He created SPAC and now, with his sons, Giovanni and Edoardo, leads
one of the few companies I am proud to work for. SPAC's people really helped me during this
transition period.

About the Reviewers

Nicolas Gapaillard is a passionate freelance Java architect, who is aware of the innovative
projects in Java and the open source world.

He started his career working at Linagora (http://www.linagora.com), an open source
software company, as a developer in the security business unit. This business unit aimed to
develop open source software that revolves around security, such as certificate management,
encrypted document storage, and authentication mechanisms.

Next, he worked for an open source software integrator named Smile (http://www.smile.
fr), where he held the roles of a developer, trainer, and technical leader in Java technologies.

After several experiences as an employee, he decided to create his own company named
BIGAP (http://bigap.fr) to do missions as a freelancer. This gives him the freedom to
manage his time in order to work on and study innovative projects.

One of the missions was to work for a French startup named Onecub (http://www.onecub.
com), which aspires to automatically classify e-business e-mail using categories for the
customers. At that time, only Mahout provided some out-of-the-box algorithms that threats about
these problems. Since then, Nicolas started to make a deeper research into the Mahout project
and data mining/data learning domain.

One day, Packt Publishing saw his article (http://nigap.blogspot.fr), and asked him to
contribute to the review of the book, so he accepted this offer with pleasure.

I want to especially thank the author of this book who has worked very hard
to write the book with a concern for quality. I would also like to thank Packt
Publishing who trusted me to contribute to the review of the book, and
manage the processes very carefully, and permitted me to synchronize the
review with the redaction of the book.

I would like to thank the other reviewers who have helped for the redaction
of the book and the quality of the content and also thank my wife, who let
me have some free time to work on the review.

Vignesh Prajapati is working as a Big Data scientist at Pingax. He loves to play with open
source technologies, such as R, Hadoop, MongoDB, and Java. He has been working on data
analytics with machine learning, R, Hadoop, RHadoop, and MongoDB. He has expertise in
algorithm development for data ETL and generating recommendations, predictions, and
behavioral targeting over e-commerce, historical Google analytics, and other datasets. He
has also written several articles on R, Hadoop, and machine learning to produce producing
intelligent Big Data applications. He can be reached at vignesh2066@gmail.com and
http://in.linkedin.com/in/vigneshprajapati/.

Apart from this book, he has worked with Packt Publishing on two other books.
He was the author of Big Data Analytics with R and Hadoop, Packt Publishing
(https://www.packtpub.com/big-data-analytics-with-r-and-hadoop/book)
and has also reviewed yet to be published Data Manipulation with R DeMystified,
Packt Publishing.

I would like to thank Packt Publishing for this wonderful opportunity, and
my family, friends, and the Packt Publishing team who have motivated and
supported me to contribute to open source technologies.

Shannon Quinn is a candidate of the Joint Carnegie Mellon University-Pittsburgh Ph.D.
program in Computational Biology. His research interests involve spectral graph theory,
machine vision, and pattern recognition for biomedical image recognition, and building
real-time distributed frameworks for biosurveillance with his advisor Dr. Chakra Chennubhotla.
He is also a contributor for Apache Mahout and other open source projects.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browsers

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

I am a big fan of the Mad Men TV series where I heard the song "Going out of
my head" for the first time performed by Sérgio Mendes and Brasil 66.

I think my feelings for you, Michela, are best represented by the
following verse:

Goin' out of my head over you

Out of my head over you

Out of my head day and night

Night and day and night, Wrong or right...

Being a father these days is becoming a very tough task; Enrico and Davide,
I hope you will appreciate my efforts on this task.

 — Piero Giacomelli

Table of Contents
Preface 1
Chapter 1: Mahout is Not So Difficult! 7

Introduction 7
Installing Java and Hadoop 8
Setting up a Maven and NetBeans development environment 13
Coding a basic recommender 18

Chapter 2: Using Sequence Files – When and Why? 29
Introduction 29
Creating sequence files from the command line 30
Generating sequence files from code 34
Reading sequence files from code 42

Chapter 3: Integrating Mahout with an External Datasource 47
Introduction 47
Importing an external datasource into HDFS 49
Exporting data from HDFS to RDBMS 59
Creating a Sqoop job to deal with RDBMS 62
Importing data using Sqoop API 64

Chapter 4: Implementing the Naϊve Bayes classifier in Mahout 67
Introduction 67
Using the Mahout text classifier to demonstrate the basic use case 69
Using the Naïve Bayes classifier from code 81
Using Complementary Naïve Bayes from the command line 86
Coding the Complementary Naïve Bayes classifier 87

ii

Table of Contents

Chapter 5: Stock Market Forecasting with Mahout 91
Introduction 91
Preparing data for logistic regression 92
Predicting GOOG movements using logistic regression 97
Using adaptive logistic regression in Java code 103
Using logistic regression on large-scale datasets 106
Using Random Forest to forecast market movements 112

Chapter 6: Canopy Clustering in Mahout 115
Introduction 115
Command-line-based Canopy clustering 116
Command-line-based Canopy clustering with parameters 121
Using Canopy clustering from the Java code 126
Coding your own cluster distance evaluation 130

Chapter 7: Spectral Clustering in Mahout 133
Introduction 133
Using EigenCuts from the command line 133
Using EigenCuts from Java code 138
Creating a similarity matrix from raw data 142
Using spectral clustering with image segmentation 149

Chapter 8: K-means Clustering 155
Introduction 155
Using K-means clustering from Java code 155
Clustering traffic accidents using K-means 162
K-means clustering using MapReduce 166
Using K-means clustering from the command line 170

Chapter 9: Soft Computing with Mahout 179
Introduction 179
Frequent Pattern Mining with Mahout 179
Creating metrics for Frequent Pattern Mining 184
Using Frequent Pattern Mining from Java code 190
Using LDA for creating topics 198

Chapter 10: Implementing the Genetic Algorithm in Mahout 205
Introduction 205
Setting up Mahout for using GA 206
Using the genetic algorithm over graphs 210
Using the genetic algorithm from Java code 215

Index 229

Preface
The rise of social network websites coupled with the new generation of mobile devices have
drastically changed the way we handle data in the last 10 years.

To give you an idea of what is going on, we refer to a study done by Qmee in 2012
that shows what usually happens on the Internet in 60 seconds. The results shown at
http://blog.qmee.com/qmee-online-in-60-seconds/ tell us that Twitter received
2,78,000 tweets, Facebook received 41,000 posts every second, while YouTube gets 72
hours of video uploaded. These are the biggest websites, but even for national or international
websites it is common to have millions of records, collected for logging purposes.

To manage such large volumes of information, new frameworks have been coded to basically
allow the sharing of the computational tasks via different machines. Hadoop is the Apache
solution for coding algorithms whose computational tasks can be divided between various
hardware infrastructures.

When one deals with billions of data records to be analyzed, in most cases the purpose is
the information extraction to find new relations between data. Traditionally, data mining
algorithms were developed for this purpose. However, there is no way to compute, in a
reasonable time, the data mining tasks when dealing with very large datasets. Mahout is the
data mining framework created to be used, coupled with Hadoop, for applying data mining
algorithms to very large datasets using the MapReduce paradigm encapsulated by Hadoop.
So Mahout offers the coder a ready-to-use framework for doing data mining tasks using the
Hadoop infrastructure as a low level interface.

Preface

2

This book will present you with some real-world examples on how to use Mahout for mining
data and will present you with the various approaches to data mining. The key idea is to
present you with a clean, non-theoretical approach to the ways one can use Mahout for
classifying data, for clustering them, and for creating forecasts. The book is code-oriented,
and so we will not enter too much into the theoretical background at every step, while we
will still refer the willing reader to some reference materials for going deep into the specific
arguments. Some of the challenges we faced while presenting this book are:

 f From my experience, Mahout has a very high learning curve. This is mainly because
using an algorithm that uses the MapReduce methodology is completely different
from the sequential approach.

 f The data mining algorithms themselves are not so easy to understand and require
skills that in most cases a developer does not necessarily have.

So we tried to propose a code-oriented approach to allow the reader to grasp the meaning and
the purpose of every piece of code suggested without the need of a very deep understanding
of what is going on behind the scenes.

The result of this approach should be judged by you and we hope that you find pleasure in
reading it as much as we had in writing it.

What this book covers
Chapter 1, Mahout is Not So Difficult!, describes how to create a ready-to-be-used development
environment in one machine. A recommendation algorithm will be coded so that all the pieces
involved in a data mining operation as the presence of Hadoop, the JARs to be included, and so
on, will be clear to the reader without any previous knowledge of the environment.

Chapter 2, Using Sequence Files – When and Why?, introduces the reader to sequence files.
Sequence files are a key concept when using Hadoop and Mahout. In most cases, Mahout is
not ready to directly treat the datasets that are used. So before entering in the code algorithm
we need to describe how to treat these particular files.

Chapter 3, Integrating Mahout with an External Datasource, details recipes to read and write
data from an RDBMS using command-line tools as well as code.

Chapter 4, Implementing the Naïve Bayes classifier in Mahout, tells us in depth how to use
the Naïve Bayes classifier to classify text documents. How to convert document terms into
vectors of numbers counting the occurrence will also be fully described. The use of the Naïve
Bayes classifier and the complementary Naïve Bayes classifier from the Java code will also
be presented.

Chapter 5, Stock Market Forecasting with Mahout, deals basically with two algorithms:
Logistic Regression and Random Forests. Both of them will show you the possibility to analyze
some common datasets to obtain forecasts on future values.

Preface

3

Chapter 6, Canopy Clustering in Mahout, starts to describe the most used algorithm inside
the Mahout framework, the one involving cluster analysis and classification tasks of Big Data.
In this chapter the methodology for using canopy cluster analysis to aggregate data vectors
around common centroids will be described with real-world examples.

Chapter 7, Spectral Clustering in Mahout, continues with the analysis of the clustering
algorithms available in Mahout. This chapter describes the ways to use spectral clustering,
which is very efficient in classifying information linked together in the form of graphs.

Chapter 8, K-means Clustering, describes the use of K-means clustering, both sequential
as well as MapReduce, to classify text documents in topics. We will explain the use of this
algorithm from the command line as well as the Java code.

Chapter 9, Soft Computing with Mahout, describes an old literature algorithm named the
Frequent Mining Pattern. It allows you to forecast the items that should be sold together
moving from the previous purchases made by customers. The Latent Dirichlet algorithm will
also be presented for text classification.

Chapter 10, Implementing the Genetic Algorithm in Mahout, describes the use of the Genetic
algorithm in Mahout to solve the Travelling Salesman problem and to extract rules. We will see
how to use different versions of Mahout to use these algorithms.

What you need for this book
We will cover every software needed for this book in the first chapter. All the examples in the
book have been coded using Ubuntu 10.04 Lucid release and a virtual machine created with
Oracle Virtual Box.

Who this book is for
Apache Mahout Cookbook is ideal for developers who want to have a fresh and fast introduction
to Mahout. No previous knowledge of Mahout is required, and even skilled developers or system
administrators will benefit from the various recipes presented in this book.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "In the same way you
could also use Eclipse to access the svn repository and compile everything using the Maven
Eclipse plugin."

Preface

4

A block of code is set as follows:

File ratingsFile = new File(outputFile);
DataModel model = new FileDataModel(ratingsFile);
CachingRecommender cachingRecommender = new CachingRecommender(new
 SlopeOneRecommender(model));

Any command-line input or output is written as follows:

wget http://www.grouplens.org/system/files/ml-1m.zip

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Click on the Add button and
after a few seconds, you should be able to see all the Mahout jars added."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded on our
website, or added to any list of existing errata, under the Errata section of that title. Any existing
errata can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Mahout is Not

So Difficult!

This chapter contains the following recipes:

 f Installing Java and Hadoop

 f Setting up a Maven and NetBeans development environment

 f Coding a basic recommender

Introduction
Mahout is basically a set of machine learning Java libraries meant to be used for various
tasks, such as classification, evaluation clustering, pattern-mining, and so on.

There are many good frameworks that are user-friendly and fully equipped with more algorithms
to do these tasks. For reference, the R community is much bigger and in the Java world we have
had the RapidMiner and Weka frameworks present on the scene for many years.

So why should we use Mahout instead of the aforementioned frameworks? Well, the truth is
that all the previous frameworks are not meant to be designed for very large datasets. When
we refer to very large datasets we refer to datasets, no matter the format, whose records
require an order in the scale of a hundred million records.

The power of Mahout lies in the fact that the algorithms are meant to be used in a Hadoop
environment. Hadoop is a general framework that allows for an algorithm to run in parallel on
multiple machines (called nodes) using the distributed computing paradigm.

Mahout is Not So Difficult!

8

The key idea behind Hadoop is that instead of having a single juggernaut server that handles
the computational and storage task of a very large dataset, Hadoop divides the whole task
into a set of many subtasks, using the divide and conquer paradigm. After all the single tasks
have been done, Hadoop is responsible for managing and recombining all the single subsets
once their computation is over and the output is generated. In this case, it is possible to divide
heavy computational tasks into many single node machines even if they are not so powerful,
and obtain the results. The idea is not far from the first distributed computing example such
as SETI@Home (http://setiathome.berkeley.edu/) and the Great Internet Mersenne
Prime Search (GIMPS) (http://www.mersenne.org/), but in this case we distribute
machine learning algorithms. We will cover the details in a better manner over the course of
this book with the help of various examples.

Installing Java and Hadoop
The first part of this chapter will be dedicated to setting up a working environment in a single
node Hadoop machine, so as to get the reader ready to code in the easiest and fastest way.

As we said before, we are interested in guiding coders to install a development machine to be
able to test their Mahout code quickly. We will not go too much in detail on how to deploy the
code on a production Hadoop cluster. That is out of the scope of this book; it involves a more
detailed and sophisticated approach and configuration.

We only need to let the reader know that for all our recipes we use a single node cluster, so
even if in various recipes we describe the parameters needed for an algorithm to be run in
many clusters, in our case, the internal computation will be always forced to use one node
cluster. For reference on how to configure Hadoop clusters, we refer the reader to another
good book, Hadoop Operations and Cluster Management Cookbook, Packt Publishing by
Shumin Guo.

Using cygwin it is also possible to test Hadoop and Mahout in a native Windows system but
we will not cover this argument; we point out only to the related wiki on the Apache website
(http://hadoop.apache.org).

Considering that Hadoop can also run in a cloud environment, the willing reader could also
use Amazon EC2 to set up a single node Hadoop cluster for testing purposes. The reference
for using these configurations can be found in the Amazon EC2 wiki (http://wiki.
apache.org/hadoop/AmazonEC2).

At the time of writing, Microsoft released a Hadoop implementation that can be run in Azure
Cloud but we have not tested it. A simple Google search could help you.

It is also possible to download Hadoop from the Cloudera website (www.cloudera.com)—a
VirtualBox 64-bit image of a complete installed Hadoop system.

Nevertheless, configuring a minimal system from scratch could greatly help you to understand
how Hadoop and Mahout interface together.

Chapter 1

9

At times, it is also possible to configure Mahout without Hadoop to test the code. However, as
a matter of fact, since Mahout gets the most of its advantages in terms of performance and
scalability from Hadoop, we think that this second option is less learning focused.

So, we are going to install Hadoop and Mahout on an Ubuntu 32-bit machine. We will use a
virtual machine so as to have a fast replication development environment available.

With an open source approach, we prefer to use the VirtualBox machine emulator; for those
not familiar with VirtualBox, please go through VirtualBox 3.1: Beginner's Guide, Packt
Publishing (http://www.packtpub.com/virtualbox-3-1-beginners-guide/book).

In our case, since we use a VirtualBox virtual machine hosted by a Windows 7 Professional
Edition and we do want to have a possible fast reply from the guest machine, we decided
to use the Ubuntu Desktop 10.04 32-bit. Considering that we use mainly Debian-based
commands, it is possible to replicate Ubuntu on a Debian-based distribution.

Hadoop and Mahout are not meant to be run as a root user, so we create a user called
hadoop-mahout to install and run everything.

Our installation strategy will follow the given points:

 f Installing JDK 1.7u9

 f Installing Maven 3.0.4

 f Installing Hadoop 0.23.5

 f Installing NetBeans 7.2.1

 f Compiling from sources Mahout 0.8-SNAPSHOT

The reader could also download the latest Mahout binaries, including the correct jars into
his/her example project, but using Maven helps the reader to control the Mahout releases
better, and the versioning of jars. In this case, all the Mahout jars' dependencies should be
downloaded manually and this could be a very time-consuming and boring task.

Maven will also be used for our test code. We will not cover the features that Maven has
to offer; we only point the reader to a good Packt book: http://www.packtpub.com/
apache-maven-3-0-cookbook/book.

Before moving to the coding procedure, we need to install everything, so let us start with the
downloading phase.

This is the first introductory chapter that will permit the reader to see how to create a single
node Hadoop development environment.

We advise the reader to follow the next recipe very carefully,
as all the other recipes in the book depend on its correctness
for compiling and running properly.

Mahout is Not So Difficult!

10

Getting ready
We begin by downloading the JDK. Hadoop and Mahout need JDK 1.6 or higher and we use
the JDK 1.7u9, which can be downloaded from the Oracle website: http://www.oracle.
com/technetwork/java/javase/downloads.

Hadoop could also be run with the OpenJDK implementation of the virtual machine but we
prefer to use Oracle's implementation.

Maven 3.0.4 can also be downloaded from one of the mirrors of the Apache website; in this
case, we use the following terminal command:

wget http://it.apache.contactlab.it/maven/maven-3/3.0.4/binaries/apache-
maven-3.0.4-bin.tar.gz

Then, you could also download Hadoop 0.23.6 using a similar command as follows:

wget http://apache.panu.it/hadoop/common/hadoop-0.23.6/hadoop-0.23.5.tar.
gz

Now that you have everything downloaded in one folder, in our case /home/hadoop-
mahout/Downloads, you should see the following screenshot:

Chapter 1

11

How to do it...
In this recipe we will finish the setup of our environment for the Java, Maven, and Hadoop
parts. The steps for all three frameworks are always the same:

 f Decompress the archive

 f Add the correct console variable

 f Test the correctness of the installation

Now, we will decompress every archive and move the resulting folder from the /home/
hadoop-mahout/Downloads folder to the /home/hadoop-mahout/ folder. This is
because the Downloads folder is meant to be erased or used by other software, so we want
to save our installed procedure:

1. Decompress everything in the terminal window to the Downloads folder by typing:
cd /home/hadoop-mahout/Downloads

2. Then give the following commands:
tar -C /home/hadoop-mahout/ -xvzf jdk-7u9-linux-i586.tar.gz

tar -C /home/hadoop-mahout/ -xvzf apache-maven-3.0.4-bin.tar.gz

tar -C /home/hadoop-mahout/ -xvzf hadoop-0.23.5.tar.gz

3. This will decompress the three archives into the folder /home/hadoop-mahout/.
So the appearance of the hadoop-mahout folder should look like the following
screenshot:

Mahout is Not So Difficult!

12

4. We have everything we need to create and set up some environment variables. This
is because Maven, Hadoop, and Mahout need to have a configured variable named
JAVA_HOME.

5. We also need to have the mvn command—the Hadoop command accessible from
every terminal. To have this variable fixed even in case of a system reboot, we will
save them in the .bashrc profile as well. This is an easy way in Ubuntu to set up
variables for a single user.

6. To accomplish all these settings you need to:

 � Open the file named .bashrc, which is located in the /home/hadoop-
mahout/ folder, with your preferred text editor

 � Add the following lines at the end of the file:
export JAVA_HOME=/home/hadoop-mahout/jdk1.7.0_09
export HADOOP_HOME=/home/hadoop-mahout/hadoop-0.23.5
export MAVEN_HOME=/home/hadoop-mahout/apache-maven-3.0.4
export PATH=$PATH:$JAVA_HOME/bin:$MAVEN_HOME/bin:$HADOOP_
HOME/bin

 � Save the file and return to the console

7. The first three lines create the user variables: JAVA_HOME, MAVEN_HOME and
HADOOP_HOME.

8. The last line adds the variables coupled with their relative bin locations to the
PATH variable.

9. To test JDK and Maven, now type the following command:
java –version

mvn –version

You should have the following output:

Chapter 1

13

You should also have the output seen in the following screenshot:

10. To test the correctness of the Hadoop installation, we will compute an example
that comes from the Hadoop distribution, which computes the value of pi using 10
MapReduce jobs on a standalone installation.

11. So type the following command from the HADOOP_HOME folder:
hadoop jar /home/hadoop-mahout/hadoop-0.23.5/share/hadoop/
mapreduce/hadoop-mapreduce-examples-0.23.5.jar pi 10 100

12. Do so from a terminal prompt and you should see the 10 MapReduce jobs that start
and end with the following lines:
Job Finished in 8.983 seconds

Estimated value of Pi is 3.14800000000000000000

So, here we have successfully set up a single Hadoop standalone node for testing. We are
now ready to download and compile the Mahout sources using Subversion (SVN) and Maven.

Setting up a Maven and NetBeans
development environment

This is a fundamental recipe and should be followed very carefully, as all the other settings
explained in the rest of the book depend on the successful installation of Maven and
NetBeans. If you are more comfortable using Eclipse instead, we suggest you to take a look at
the guide provided at http://maven.apache.org/eclipse-plugin.html. However, as
the whole book is based on the assumption of using NetBeans as the IDE, in case Eclipse is
used, every configuration on it should be re-checked.

Getting ready
Now we are ready for the last part, which is installing and configuring Mahout, to be used
with NetBeans.

Mahout is Not So Difficult!

14

For coding purposes, we decided to use NetBeans as an IDE instead of other IDEs such as
Eclipse, because this last version at the time of writing was not fully compatible with all the
Maven 3.0.4 specifications. Again, it is possible to use Eclipse or IntelliJ, but the configuration
is more difficult than this one. For using Eclipse with Maven, refer to http://maven.
apache.org/eclipse-plugin.html.

We will compile the latest Mahout snapshot using SVN in order to have the latest release.
Nevertheless, you could also download the binaries file and link the jars once needed.

We will use NetBeans for compiling the sources, so before proceeding we need to download
the file netbeans-7.2.1-ml-javase-linux.sh from the NetBeans website (www.
NetBeans.org).

Once downloaded, the Downloads folder should look like the following:

Now to install NetBeans, simply move to the Downloads folder and type the following
command in the terminal window:

/home/Hadoop-Mahout/Downloads/sh netbeans-7.2.1-ml-javase-linux.sh

Then, follow the procedure till the end.

Chapter 1

15

Now the hadoop-mahout user folder should look like the following screenshot:

The NetBeansProjects folder will contain our Mahout sources and our code. We are now
ready for the interesting phase that is the Mahout source-code compilation from NetBeans.
Now that we have NetBeans installed, we are ready to compile Mahout's latest snapshot
using NetBeans.

How to do it...
At the time of writing the latest Mahout snapshot, the version is Version 0.8. We invite the
reader to follow the releases because apart from bug fixes, new algorithms and features that
arrive are constantly being released by this vibrant community.

1. We need to download the Mahout sources from Subversion, import the Maven-related
project into NetBeans, and finally install everything.

2. Fortunately, the NetBeans IDE offers all this action integrated into various GUI
interfaces. Simply using the main menu, go to Team | Subversion | Checkout and
complete the field repository URL using the following link: http://svn.apache.
org/repos/asf/mahout/trunk.

Mahout is Not So Difficult!

16

Click on Next and complete the form as shown in the following screenshot:

3. Once NetBeans finishes downloading the whole package, it will ask if you want to scan
and open the project. So click on Ok in the information window and let the IDE import
the Maven project. Now, in the Projects tab you should see the following structure:

4. The sources have been downloaded and can be found in the NetBeansProjects
folder.

Chapter 1

17

5. Now for compiling these sources using Maven, right-click with your mouse on the
Mahout Release Package icon and choose Clean and Build item.

6. Time to take a break. Surf the Internet, check you emails, or drink a cup of coffee
because the compiling procedure could take a while. When you return from your
break you should see the following output:

Eureka! We now have all that we need in order to test Mahout.

If you expand all the dependency icons from the NetBeans project structure, you should see
all the jars and dependency jars that have been downloaded from the Apache website, as
shown in the following screenshot:

Mahout is Not So Difficult!

18

How it works...
The Subversion plugin, used by NetBeans, downloads the latest source code from the
official Mahout svn repository. Once finished, NetBeans recognizes the pom.xml file on the
source-code repository, so it deals with a Maven source code and then compiles everything,
tests it, and in the end creates the jars based on the folder structure.

There's more...
NetBeans gives you only the interface to control the Subversion Maven process. But you
could also directly use the command-line interfaces, if you find it difficult to code using a
single text editor.

In the same way, you could also use Eclipse to access the svn repository and compile
everything using the Maven Eclipse plugin.

Do not forget that once you have downloaded the sources and before importing the
Maven project into Eclipse, you need to be in the root folder of your sources to run the
following command:

mvn eclipse:eclipse

This creates an Eclipse ready-to-use project import file.

If you do not follow the preceding step, you could have version
problems or compiling errors in your code.

Coding a basic recommender
Now that we have a fully configured IDE with the latest release of Mahout compiled from the
sources, we can finally run our first example code.

In an effort to code less and get more from the user's perspective, we will see an example on
how to code a recommender using Mahout.

As the name suggests, a recommender is a software that is able to make suggestions on new
or existing preferences from previously recorded preferences.

For example, the recommender system on purchased items is able to give you suggestions on
what you should buy next, based on your previous buys.

There can be various types of recommenders, depending on the complexity of the type of
dataset they analyze. In our case we will use Slope One recommender, which is based on
Collaborative Filter methodology.

Chapter 1

19

Automatic software recommender systems are one of the first problems in the data mining
history. Basically, the problem can be divided into two steps:

 f Read a huge amount of data that maps a user with some preferences for an item

 f Find an item that should be suggested to the user

Everyone that has bought something on an e-commerce website such as Amazon must have
seen the site suggestions for new books or stuff to buy. We will simulate the same result using
movie suggestions given by some users to mine them and find other movies that have not
been seen previously.

Getting ready
Data miners are hungry for data, so the more data you have the more precise your output
will be.

Before continuing, we need to download a set of data for testing purposes. We will use the
GroupLens dataset for movie recommendations.

The GroupLens dataset is a dataset freely available created by the Department of Computer
Science and Engineering at the University of Minnesota, which consists of 1 million ratings
from 6000 users on 4000 movies.

The data is available in a text file format, which is the simplest way for Mahout to read data.
To download the data, simply type the following command into a terminal console:

wget http://www.grouplens.org/system/files/ml-1m.zip

Unzip the file and you should see that the archive contains four main files:

 f users.dat: This contains 6000 users
 f movies.dat: This contains the name of the movies
 f ratings.dat: This is the association between the users and the movies with a

number for determining how much the user liked the movie
 f README: This is the format explanation

If you open the ratings.dat file, which is the one that will be used, you should see the
following lines:

UserID::MovieID::Vote::datetime
1::1193::5::978300760
1::661::3::978302109
1::914::3::978301968

For every line you have a movie rating that can be interpreted as follows: user 1 gave a vote
of 5 (out of 5) to the movie One Flew Over the Cuckoo's Nest and gave a vote of 3 to James
and the Giant Peach and to My Fair Lady. The last long number is the long date/time
of the rating itself.

Mahout is Not So Difficult!

20

Unfortunately, even though Mahout is able to manage some file format as input, this one is
not in the Mahout ready-to-use format. This is because in our case the delimiter is ::. This
first easy example will demonstrate some of the common problems when dealing with the
non-standard format.

In this case, we will transform the original file into another that has the following format:

UseID,MovieID
1,1193
1,661
1,914

Basically, we will read the original file line-by-line and copy every line to a new one, removing
some unessential information to obtain the final format.

The original file also contains the vote assigned to the movie. For this recommender, we are
not interested in the vote given to the movie by the user, so we remove it. We also remove the
information on the date of the rating.

As we stated before, we will use Maven to create our example during the whole book. So, we
need to create the Maven project in NetBeans. Our steps will be:

 f Create the Maven project structure with a main class
 f Add the Maven dependencies to the Mahout Maven project previously compiled

Fire up NetBeans and from the NetBeans main menu, choose New Project and from the
window that appears, choose Java Application as seen in the following screenshot:

Chapter 1

21

Then complete the following forms as shown:

Now, we need to add the dependency to the previously compiled Mahout Maven sources. To
do this in Maven's project folder structure, right-click on the dependencies icon and choose the
item Add dependency from the pop-up menu. Choose the dependency to add as follows:

Click on the Add button and after a few seconds, you should be able to see all the Mahout
jars added.

Mahout is Not So Difficult!

22

How to do it...
Now, we are ready to code and test our first example. We need to carry out the
following actions:

1. Transform the ratings.dat file from the GroupLens format to the CSV format.

2. First, we will create a Model class that will handle the format of the new ratings.
csv file that we will use.

3. Create a simple recommender on this model.

4. Then, using a cycle to extract the entire user's list contained on the ratings.csv
file, we will see the recommendations on the titles for every user.

Following the previous steps, the code will mimic it. Before proceeding, let us do the
necessary imports:

1. The imports are added as follows:
package com.packtpub.mahoutcookbook.chapter01;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.util.List;

import org.apache.commons.cli2.OptionException;
import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.impl.common.
LongPrimitiveIterator;
import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import org.apache.mahout.cf.taste.impl.recommender.
CachingRecommender;
import org.apache.mahout.cf.taste.impl.recommender.slopeone.
SlopeOneRecommender;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;

public class App
{
 static final String inputFile = "/home/hadoop-mahout/
Downloads/ml-1m/ratings.dat";
 static final String outputFile = "/home/hadoop-mahout/
Downloads/ml-1m/ratings.csv";

Chapter 1

23

Moving to the main method and the core of our code we first code
a method to transform the original MovieLens file into a csv file
without the vote as explained before.

 public static void main(String[] args) throws IOException,
TasteException, OptionException
 {
 CreateCsvRatingsFile();

The full method is shown as follows:
private static void CreateCsvRatingsFile() throws
FileNotFoundException, IOException
{
 BufferedReader br = new BufferedReader(new
FileReader(inputFile));

 BufferedWriter bw = new BufferedWriter(new
FileWriter(outputFile));

 String line = null;
 String line2write = null;
 String[] temp;
 int i = 0;
 while (
 (line = br.readLine()) != null
 &&
 i < 10000
)
{
 i++;
 temp = line.split("::");
 line2write = temp[0] + "," + temp[1];
 bw.write(line2write);
 bw.newLine();
 bw.flush();
 }
 br.close();
 bw.close();
}
}

2. Then, it is time to build the model based on the comma-separated value (CSV) file
shown as follows:
 // create data source (model) - from the csv file
 File ratingsFile = new File(outputFile);
 DataModel model = new FileDataModel(ratingsFile);

Mahout is Not So Difficult!

24

3. Create the SlopeRecommender:
 // create a simple recommender on our data
 CachingRecommender cachingRecommender = new
CachingRecommender(new SlopeOneRecommender(model));

 // for all users
for (LongPrimitiveIterator it = model.getUserIDs();
it.hasNext();)
{
 long userId = it.nextLong();

4. At the end, we simply display the result recommendation:

 // get the recommendations for the user
 List<RecommendedItem> recommendations = cachingRecommender.
recommend(userId, 10);

 // if empty write something
 if (recommendations.size() == 0){
 System.out.print("User ");
 System.out.print(userId);
 System.out.println(": no recommendations");
 }

 // print the list of recommendations for each
 for (RecommendedItem recommendedItem : recommendations) {
 System.out.print("User ");
 System.out.print(userId);
 System.out.print(": ");
 System.out.println(recommendedItem);
 }
 }
}

Let us take a look at what this code does by analyzing it.

Downloading the example code

You can download the example code files for all Packt
books you have purchased from your account at
http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

Chapter 1

25

How it works...
Following the code, we have the import statements. All the imports are from the jars linked
using the dependencies from Mahout Version 0.8.

The first method is called for data transformation purposes, and it is the
CreateCsvRatingsFile method. This piece of code basically transforms the original file
into the comma-separated values. As you can see, we chose to convert only the first 10,000
rows of the file. This choice is made to reduce the computational time when the recommender
actor will enter the stage, and to avoid a Java heap memory exception on one single machine.

Once we are done with this, we enter the interesting stuff contained in the following three
lines of code:

File ratingsFile = new File(outputFile);
DataModel model = new FileDataModel(ratingsFile);
CachingRecommender cachingRecommender = new CachingRecommender(new
 SlopeOneRecommender(model));

After creating a DataModel class based on the CSV file, we create a CachingRecomender
object using SlopeOneRecommender.

Mahout comes with different recommenders even if you can build your own. The default
recommenders are as follows:

 f User-based recommender: This recommender basically couples the users using a
similarity or neighborhood measure

 f Item-based recommender: This recommender, instead of using only users as
proximity measure in preferences, takes in the variables as the similarity between the
items chosen

 f Slope One recommender: This uses a linearized function to couple users and items
together to evaluate proximity

In our case we use the simplest one—that is the Slope One recommender—that is effective.

Then, we cycle through every user that is present on the new file ratings.csv, and for every
user, we extract the first 10 recommended items.

Mahout is Not So Difficult!

26

After a build and compile, the first run should output a suggestion as seen in the
following screenshot:

As we can see for user 1, the recommender suggests the movie with the ID 3461 with a
probability of 1.0. (The probability is always 1 for a Boolean recommender such as the Slope).

If we take a look at the user ID 1, we can see that the user is a woman who is above 18
years old according to the users.dat file. For her, for example, a suggested movie is 3461
according to the movies.dat file:

3461::Lord of the Flies (1963)::Adventure|Drama|Thriller
2::Jumanji (1995)::Adventure|Children's|Fantasy

It is interesting to notice that both the films' plots revolve around the adventures of children.
So, it seems that the suggestion given is a good one considering the age of the user, even if
the title of the movie Lord of the Flies could be updated.

The reader could try to give a different run to the program by using 100, instead of using
10,000 ratings. This can be done by substituting the line, i < 10000, with i < 100.

In this case, what we observe is that the software outputs no suggestion as we can see in the
following screenshot:

Chapter 1

27

So, the results are greatly affected by the size of the ratings.cvs file and obviously the
more data you have, the better the suggestions are that the recommender can give.

See also
Now that we have coded a basic recommender, you could also try to see the other type
of recommenders provided within the example code. In fact, there is a ready-to-use
GroupLens recommender that uses the preferences of the user settings as well. This more
sophisticated approach could be more useful for the willing reader to understand how Mahout
recommender implementations work.

For a more formal approach on how recommenders work, refer to the introductory article
at http://dl.acm.org/citation.cfm?id=245121. For additional datasets to test
recommenders, you could use the Jester dataset available at http://eigentaste.
berkeley.edu/dataset/.

For datasets related to e-commerce recommendations, you could take a look at the
datamarket website, http://datamarket.com.

2
Using Sequence

Files – When and Why?

The purpose of this chapter is to show you the use of sequence files. In particular we will cover
the following recipes:

 f Creating sequence files from the command line

 f Generating sequence files from code

 f Reading sequence files from code

Introduction
In the last chapter, we were briefly introduced to Mahout and we created a fully working
example to be used for demonstrating how to code with Mahout.

At a higher level, the Hadoop MapReduce algorithm works as shown in the following figure:

problem data Worker Node
1

Worker Node
2

Worker Node
nsolution data

Map

Reduce

Master Node

Using Sequence Files – When and Why?

30

From a coding point of view, we have two stages:

 f Mapping: In this stage, the original computational problem is taken by the master
node and divided into smaller pieces. Every computational piece is then sent to
different worker nodes called mappers.

 f Reducing: In this stage, the output of every mapper node is collected and
reassembled using the same key index for all the nodes.

To give a simple conceptual example, we consider Hadoop WordCount that counts the number
of words there are in a single text; the output is a set of key/number values, where key is the
word and number counts how many times a word appears in the text. We divide the text into
smaller pieces and we assign every piece to a mapper that records the occurrences of the word
in that piece of text. At the end, once every mapper finishes its job, the whole set of key/number
values is summarized by summing the count of the repeated words. This approach allows you
to parse very big datasets, with the only limit being that each mapper should not exceed the
memory capacity of the node where it is running. The power of this framework is the possibility
to have parallelism in computing the map job, so you can have the advantage of different nodes
working at the same time on different smaller pieces of the original input. This parallel approach
has been demonstrated to be, in general, five times faster than the sequential approach, even
for very simple algorithms such as merging and sorting. You can view the related documentation
at https://www.vmware.com/files/pdf/VMW-Hadoop-Performance-vSphere5.pdf.

We are aware that such big numbers must be handled with a lot of caution. This kind of
approach has been demonstrated to be a winning one in many contexts, both theoretically and
practically. Above all, as the databases grow in magnitude, this is the only practical approach.

Nevertheless, the advantage of using the parallel programming approach against the
traditional sequential one is limited to the fact that you cannot use the same sequential
algorithm. This is why there can be lots of differences in the same algorithm as we consider
them from the sequential and the parallel side. A number of machine-learning and data-mining
algorithms are based, as we will see further, on the calculation of vectors and matrices that are
entities, and that can be easily integrated in a parallel way.

So let's now move on to our first recipe.

Creating sequence files from the
command line

Before proceeding with our recipe we need some data to be tested. We chose to use the
Lastfm dataset.

Chapter 2

31

Getting ready
We will start by creating a new folder to work with. Choose a folder (in our case, /mnt/new/)
and type in the following command:

mkdir lastfm

mkdir ./lastfm/original

mkdir ./lastfm/sequencesfiles

export WORK_DIR=/mnt/new/lastfm

cd $WORK_DIR

So we create a lastfm folder to store the data we want to work with. For the sake of
simplicity, we use an environment variable to store the absolute path (in our case, /mnt/
new/lastfm). Change it accordingly for your examples to work.

The Lastfm dataset is freely available and can be downloaded using the following
command line:

cd $WORK_DIR

hadoop-mahout@hadoop-mahout-laptop:/mnt/new/lastfm$ wget http://static.
echonest.com/Lastfm-ArtistTags2007.tar.gz

To untar it, use the following command:

hadoop-mahout@hadoop-mahout-laptop:/mnt/new/lastfm$ tar –xvzf Lastfm-
ArtistTags2007.tar.gz

Now you should have the following folders inside your $WORK_DIR folder:

Using Sequence Files – When and Why?

32

Now we can have our original files in the folder $WORK_DIR/original with the
following command:

hadoop-mahout@hadoop-mahout-laptop:/mnt/new/lastfm$ cp /mnt/new/lastfm/
Lastfm-ArtistTags2007/*.* /mnt/new/lastfm/original/

Before proceeding I invite you to take a look at the following files that build this dataset:

 f Artists.txt: This contains the artist's registry

 f Tags.txt: This consists of all the tags in the dataset

 f ArtistTags.dat: This lists all the associations between tags and artists

How to do it...
Now it is time to convert our first file from its original format to the Mahout's sequence format.

The command is pretty easy, as follows:

mahout seqdirectory -i $WORK_DIR/original -o $WORK_DIR/sequencesfiles

The output of the console is shown in the following screenshot:

Chapter 2

33

The result can be seen on the $WORK_DIR output folder that consists of two files as shown in
the following screenshot:

How it works...
Sequence files are binary encoding of key/value pairs. There is a header on the top of the file
organized with some metadata information which includes:

 f Version

 f Key name

 f Value name

 f Compression

To look at the generated file we could use the following seqdumper command:

mahout seqdumper -i $WORK_DIR/sequencesfiles/chunk-0 | more

The output is as follows:

Input Path: /mnt/new/lastfm/sequencesfiles/chunk-0

Key class: class org.apache.hadoop.io.Text Value Class: class org.apache.
hadoop.io.Text

Key: /tags.txt: Value: 440854 rock

343901 seen live

277747 indie

245259 alternative

184491 metal

158252 electronic

Using Sequence Files – When and Why?

34

At the top of the output we can see how the Key class and the Value class are bound to the
Java object (in this case, both are bound to the org.apache.hadoop.io.Text class).

By default, without any specification, the parsing is done using plain text format.

Another useful option is the -ow command, which overwrites the existing destination files.

The seqdirectory option is very useful when parsing text files, but in this case it is without
meaning, considering that we have different files with different formats. Moreover, we also
have files that are in the required format as their association with the key/value pairs is
already uniquely defined. So it is time to move to the code to see how to create the sequence
file using a more structured Java approach.

Generating sequence files from code
In this example we will take the file Artists.txt and create a sequence file using the
unique ID in the file and the name of the key/value pair. The format of the original file looks
like the following:

25231 Radiohead

20372 Pink Floyd

20251 The Beatles

19600 Red Hot Chili Peppers

18867 System of a Down

18671 Metallica

18671 Coldplay

18143 Nirvana

17629 Death Cab for Cutie

17507 Muse

16268 Green Day

16057 Franz Ferdinand

15306 Nine Inch Nails

15258 Led Zeppelin

15114 Tool

We would like to use the same format for creating a sequence file.

Chapter 2

35

Getting ready
Before proceeding to the netbeansprojects folder, start your terminal prompt and type in
the following command:

hadoop-mahout@hadoop-mahout-laptop:~/NetBeansProjects$ mvn
archetype:create -DarchetypeGroupId=org.apache.maven.archetypes -
DgroupId=com.packtpub.mahoutcookbook -DartifactId=chapter02

As an output you should see the following screenshot:

Now fire up NetBeans and from the File menu, choose New Project; the following window
will appear:

Using Sequence Files – When and Why?

36

Next you will see the folder created by the preceding mvn command:

Once you click on the button Open Project, you should be able to see the final outcome of
your import as shown in the following screenshot:

Chapter 2

37

By default when you use the mvn command, an App.Java file is created. You need to remove
it from your project by right-clicking on the project icon and selecting the Delete option from the
pop-up menu. Now, add a new main class object called CreateSequenceFileFromArtists
to the project.

You should have the following project structure as the output:

This project needs to run using Hadoop, so you need to link the jars containing the Hadoop
interfaces and classes for the mapreducer job. The Maven project we created can use the
online Hadoop repositories to download the required files.

Using Sequence Files – When and Why?

38

We need to make everything work to add the jar dependencies. To do this you need to right-
click on the Dependencies folder from the NetBeans project, choose the Add dependency
item from the pop-up menu, and enter the following search field in the forms:

In the same way, add the hadoop-core Maven package to have the dependencies installed
as shown in the following screenshot:

Chapter 2

39

How to do it...
The code for the class CreateSequenceFileFromArtists is as follows:

package com.packtpub.mahoutcookbook;

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import org.apache.commons.beanutils.ConvertUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;

/**
 *
 * @author hadoop-mahout
 */
public class CreateSequenceFileFromArtists {
 public static void main(String[] argsx) throws
 FileNotFoundException, IOException
 {
 String filename = "/mnt/new/lastfm/original/artists.txt";
 String outputfilename = "/mnt/new/lastfm/sequencesfiles/part-
 0000";
 Path path = new Path(outputfilename);

 //opening file
 BufferedReader br = new BufferedReader
 (new FileReader(filename));
 //creating Sequence Writer
 Configuration conf = new Configuration();
 FileSystem fs = FileSystem.get(conf);
 SequenceFile.Writer writer = new SequenceFile.Writer
 (fs,conf,path,LongWritable.class,Text.class);

 String line = br.readLine();
 String[] temp;
 String tempvalue = new String();
 String delimiter = " ";

Using Sequence Files – When and Why?

40

 LongWritable key = new LongWritable();
 Text value = new Text();
 long tempkey = 0;
 while (line != null) {
 tempkey++;
 line = br.readLine();
 temp = line.split(delimiter);

 key = new LongWritable(tempkey);
 value = new Text();
 tempvalue = "";
 for (int i=1; i< temp.length;i++) {
 tempvalue += temp[i] + delimiter;
 }
 value = new Text(tempvalue);
 System.out.println("writing key/value " + key.toString()
 + "/" + value.toString());
 writer.append(key,value);

 }

 writer.close();
 bf.close();

 }
}

The output of the code is as shown in the following screenshot:

Chapter 2

41

The same output could have been displayed using the hadoop command as follows:

hadoop-mahout@hadoop-mahout-laptop:/mnt/new/lastfm/sequencesfiles$ hadoop
dfs -text part-0000

This is analogous to the Mahout seqdumper command, but does not require a target
output file.

The output should be displayed as follows:

How it works...
As we have seen earlier, the format of a sequence file consists of keys/values pairs. Basically,
the algorithm performs the following actions:

1. Open the artist.txt file and read it line by line.

2. For each line use a counter to create a unique index for the key.

3. For each line read the artist on that line and create the value class.

4. Write the key and the value pair to the sequence file.

We open the file using the BufferedReader Java base object. The creation of the
Sequence.writer object is a bit trickier as we can see in the following code:

//creating Sequence Writer
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(conf);
SequenceFile.Writer writer = new SequenceFile.Writer
 (fs,conf,path,LongWritable.class,Text.class);

Using Sequence Files – When and Why?

42

To create a sequence file you need to declare the Hadoop Configuration and
FileSystem type, and the class of the key and value pair. In our case we use the predefined
Hadoop classes, the LongWritable and Text classes, corresponding to the long and
string types in Java. In this case as the original file artist.txt have the space as
separator, we need to split and separate every line to find the artist's name.

The appending of the key/value pair is done using the following code:

writer.append(key,value);

Finally, we close the Writer object using the following code:

write.close();

Reading sequence files from code
After learning how to create sequence files, it is now time to learn how to read a sequence file.
Mahout gives the possibility of reading a sequence file and converting every key/value into a
text format. The command is pretty easy. For example, to stream out the file we created in the
previous recipes, we could type the following console command:

mahout seqdumper -i $WORK_DIR/sequencesfiles/part-0000 -o
/mnt/new/lastfm/sequencesfiles/dump

This command writes a file called dump in the $WORK_DIR folder from the file part-0000
generated in the previous recipes.

However, this utility can be used only to display the content of a sequence dumper without
working on it.

Considering the fact that sequence files are generated to be parsed and used by Hadoop
mappers and reducers, we will demonstrate how to read a sequence file from Java code to be
able to work with the sequence file. In particular we will read a sequence file and create a CSV
file based on it.

Chapter 2

43

Getting ready
To be able to work, you only need to add a new class to the existing Maven project. In the
same NetBeans project we created before, we need to add a new Java class as illustrated in
the following screenshot:

A window will appear, and in the input name text field one should just enter the name of the
class, in this case ReadSequenceFileArtist, and click on the Ok button.

How to do it…
Now that we have our class ready, we simply need to add some code to the main method with
the following steps:

1. First, we need to import the used classes as shown in the following code:
/*
 *
 */
package com.packtpub.mahoutcookbook;

import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;

Using Sequence Files – When and Why?

44

2. Now add the following code in the main class:
public class ReadSequenceFileArtist {

 public static void main(String[] argvs) throws IOException
 {
 String filename = "/mnt/new/lastfm/
 sequencesfiles/part-0000";
 Path path = new Path(filename);

 String outputfilename = "/mnt/new/lastfm/
 sequencesfiles/dump.csv";

 FileWriter writer = new FileWriter(outputfilename);
 PrintWriter pw = new PrintWriter(writer);
 String newline = System.getProperty("line.separator");
 //creating header
 pw.print("key,value" + newline);

 //creating Sequence Writer
 Configuration conf = new Configuration();
 FileSystem fs = FileSystem.get(conf);
 SequenceFile.Reader reader = new
 SequenceFile.Reader(fs,path,conf);

 LongWritable key = new LongWritable();
 Text value = new Text();

 while (reader.next(key, value)) {
 System.out.println("reading key:" + key.toString() +
 " with value " + value.toString());
 pw.print(key.toString() + "," + value.toString() +
 newline);
 }
 reader.close();

 pw.close();
 writer.close();

 }
}

Chapter 2

45

3. Once run, the output folder should contain the file dump.csv as shown in the
following screenshot:

4. On opening this file with OpenOffice we have the following content:

Using Sequence Files – When and Why?

46

How it works…
The creation of a PrintWriter object class to handle outputs is pretty easy. The interesting
part is the Sequence.Reader creation. The use of the reader class is symmetrical to the
writer, except that in this case we need to read the key/value content. The following is the
code for creating this:

//creating Sequence Writer
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(conf);
SequenceFile.Reader reader = new SequenceFile.Reader
 (fs,path,conf);

LongWritable key = new LongWritable();
Text value = new Text();

We also separately declared two objects for storing the key and value types. We already know
which type they were. In case you don't, now it is possible to cast classes types.

To read the file till the end we use the following while loop:

while (reader.next(key, value)) {
 System.out.println("reading key:" + key.toString() + "
 with value " + value.toString());
 pw.print(key.toString() + "," + value.toString() + newline);
}

As you can see, by calling the next method of the Sequence.Reader object, every time it is
called, a new key value objects pair is initialized.

In this case we use the key/value pair only to generate a new CSV line separated by a comma
and with the system newline char at the end of the string.

Finally, we close every reader and writer involved object with the following code:

reader.close();
pw.close();
writer.close();

Using the preceding code is a very bad programming practice as if the writer object is null
for any reason, we will have a NullPointerException error. A better approach would be
the following one:

if (reader != null) reader.close();
if (pw != null) pw.close();
if (writer != null) writer.close();

3
Integrating Mahout with
an External Datasource

In this chapter we will cover the following:

 f Importing an external datasource into the Hadoop Distributed File System (HDFS)

 f Exporting data from HDFS to RDBMS

 f Creating a Sqoop job to deal with RDBMS

 f Importing data using Sqoop API

Introduction
Till now we have seen how Mahout works both in a standalone as well as a distributed
manner. But basically we have only worked with files, those being datasource files or
sequence files generated by some MapReduce job.

Any real-world coder, however, knows that apart from some embedded applications, 90
percent of the data is not stored in files. In most of the cases, the data is stored in a more
structured way. The data storage software, in most of the cases, stores the data in relational
databases or, speaking of a potentially new software, in NOSQL databases.

So when we need to acquire data for our data mining purposes, we need to read it from
RDBMS. And in many cases, considering that the data is comes out from our Mahout analysis,
we need to store it in structured tables so that it is possible for other software to read it for
their displaying purposes.

Integrating Mahout with an External Datasource

48

Based on our experience with data mining, a good-structured environment for having
the complete data mining frameworks should consist of an architecture as shown in the
following screenshot:

Using Hadoop in the Enterprise

High Volume
Data Flows

1 MapReduce Process2 Consume Results3

Medical Imaging sensor
data, genome sequencing,
weather data, satellite
feeds, etc.

Legacy

Industry
Financial, pharmaceutical,
manufacturing, insurance,
airline, energy
& retail data

System Data
Log files, health & status
feeds, activity streams, network
messages, Web analytics,
intrusion, spam list

Sales data, customer
behavior, product
databases, accounting
data, etc.

Science
Environment

XML

CSV

EDI

LOG

Objects

SQL

Text

JSON

Binary
C

reate M
ap

Commodity
Server Cloud

Hadoop Distributed
File System (HDFS)

Reduce Import

for scale out

Import

Dashboards,
BAM, & Mashups

Business
Intelligence
Applications

SOA
ERP
CRM
Etc.

RDBMS

Enterprise

To arrange the import/export, we will use Sqoop. Sqoop is another Apache software
foundation project devoted to the specific task of interfacing the Hadoop ecosystem with
external datasources and RDBMS.

This tool is Java based and from the algorithm point of view, is MapReduce based. As
you should have understood by now, reading data in parallel and using it in a distributed
filesystem is different from a sequential access. This is because as we read a piece of data
from RDBMS, the previously read pieces will be managed by other computational steps. So we
do not need to finish retrieving all of the dataset before starting the computational phase as it
happens during the sequential RDMS programming.

As for the other component of the Hadoop platform, it consists of a command-line utility and
an API that can be used from the Hadoop code.

Let us now start with the first of our recipes, importing data into HDFS.

Chapter 3

49

Importing an external datasource into HDFS
Obviously before proceeding, we need to create an RDBMS datasource that can be used for
our test. We choose MySQL as the RDBMS system to install a test database that will be used
both as a reading writing a storage with respect to HDFS. In this case, we made a test using
a VirtualBox Ubuntu virtual machine with 3 GB of RAM and 1 CPU. The MySQL server version
that we installed is displayed in the following screenshot:

However, we have installed a test database on our machine; but in 90 percent of real-world
Sqoop that we will use, RDBMS will be outside the machine where Sqoop is running.

Our procedure before starting the test will be the following:

 f Installing a MySQL server

 f Importing a test database into MySQL

 f Installing and configuring Sqoop

 f Formatting the HDFS

Getting ready
As we saw earlier, we need to install a working MySQL server and the client to connect and
install a test database on it. After this step, we need to install and configure Sqoop for our
first import.

To do this on our Ubuntu system, open up a terminal console and type in the following
command from a non-root account:

sudo apt-get install mysql-server

Integrating Mahout with an External Datasource

50

During the installation procedure, the software will ask you to provide a password
for your database root account, so provide one. We will use a sample database of
statistics from the US baseball official championship for our test. The data is provided
at www.baseball-databank.org. To download and install the database execute the
following series of commands:

Wget http://www.baseball-databank.org/files/BDB-sql-2011-03-28.sql.zip

Unzip BDB-sql-2011-03-28.sql.zip

mysql -u root -p -e 'create schema bbdatabank;'

Mysql –u root –p –s bbdatabank < BDB-sql-2011-03-28.sql

When you return from the command-line option, you can use the following command to check
whether everything worked:

hadoop-mahout@hadoop-mahout-laptop:~$ mysql -u root -p -s bbdatabank -e
'select distinct name from Teams limit 10;'

Enter password:

name

Boston Red Stockings

Chicago White Stockings

Cleveland Forest Citys

Fort Wayne Kekiongas

New York Mutuals

Philadelphia Athletics

Rockford Forest Citys

Troy Haymakers

Washington Olympics

Baltimore Canaries

Now that we have our database installed and ready to be used, we could start installing
Sqoop. The installation procedure is pretty easy, but some prior setup is needed. This is
because Sqoop uses JDBC drivers to attach itself to RDBMS. So we need to both download
Sqoop and the mysql jdbc driver connector.

So to proceed, the reader should open up a terminal console and download Sqoop from
sqoop.apache.org, and the MySQL JDBC driver JAR file from the MySQL website.

After resuming, we need to do the following:

1. Download Sqoop and the mysql JAR file.

2. Decompress Sqoop and copy the JAR into a folder.

3. Create a SQOOP_HOME environment variable.

4. Test whether everything works fine.

Chapter 3

51

As Sqoop relies on Hadoop to work, we need to choose the correct version of Sqoop based on
the previous Hadoop installation. In our case, we use the Sqoop 1.4.2 version that is currently
supporting Hadoop 1.x, 0.20, 0.23, and 2.0. In any case, at http://www.apache.org/
dist/sqoop/1.4.2/, you can see which version of Sqoop is compatible with Hadoop. The
following screenshot shows the index of Version 1.4.2:

Do not forget to choose the correct Hadoop extension. In our case, as we have seen in
Chapter 1, Mahout is Not So Difficult!, the version we downloaded is Hadoop 0.23.5. The
binaries of Sqoop are available at different mirrors on the Sqoop Apache website. In this case,
we use the command line to get the required version of Scoop:

wget http://www.apache.org/dist/Sqoop/1.4.2/sqoop-1.4.2.bin__hadoop-0.23.
tar.gz

Then we download the mysql jdbc driver connector using the following command:

wget http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-
java-5.1.22.tar.gz/from/http://cdn.mysql.com/

Then we extract Sqoop using the following command:

tar –xvzf sqoop-1.4.2.bin__hadoop-0.23.tar.gz

We extract the mysql JDBC driver connector using the following command:

tar –xvzf mysql-connector-java-5.1.22.tar.gz

Now it is time to configure and test Sqoop. As we did for Hadoop and Mahout, we will use
the .bashrc file. So open up the .bashrc file with your preferred text editor and add the
following lines at the end of the file:

export SQOOP_HOME=/home/hadoop-mahout/sqoop-1.4.2.bin__hadoop-0.23
export PATH=$PATH:$SQOOP_HOME/bin

Integrating Mahout with an External Datasource

52

Close the current terminal and open another terminal console. For testing your Sqoop
installation, type the following command in it:

sqoop /help

The output should be as follows:

hadoop-mahout@hadoop-mahout-laptop:~$ sqoop help

Warning: /usr/lib/hbase does not exist! HBase imports will fail.

Please set $HBASE_HOME to the root of your HBase installation.

usage: sqoop COMMAND [ARGS]

Available commands:

 codegen Generate code to interact with database records

 create-hive-table Import a table definition into Hive

 eval Evaluate a SQL statement and display the results

 export Export an HDFS directory to a database table

 help List available commands

 import Import a table from a database to HDFS

 import-all-tables Import tables from a database to HDFS

 job Work with saved jobs

 list-databases List available databases on a server

 list-tables List available tables in a database

 merge Merge results of incremental imports

 metastore Run a standalone Sqoop metastore

 version Display version information

See Sqoop's help command for information on a specific command. Now that we have
established our environment, we are ready to use Sqoop.

How to do it...
As the reader can consider that HBASE is the Hadoop distributed database Sqoop expects to
find it. To use Sqoop, HBase is not essential, but if you would like to better understand how
HBase works, we suggest taking a look at HBase Administration Cookbook, Yifeng Jiang,
Packt Publishing.

Don't be confused by the fact that Sqoop does not need to be installed in the same Hadoop
node where the data should be imported. In this example, we have everything from RDBMS
to Sqoop to Hadoop on one single machine; but in a real production environment, RDBMS
is in another ecosystem that is only connected via the IP address to the machine where Sqoop
is installed.

Chapter 3

53

In a production environment, you probably need to assign a dedicated machine to Sqoop
for making scheduled imports. Last but not least, after installing Sqoop, we need to add the
mysql JAR file for working with the mysql databases that we created in the previous section.
Follow these steps to do so:

1. Simply copy the mysql-connector-java-5.1.22-bin.jar file from the untarred
archive to the $SQOOP_HOME/lib folder. Following our book's setup, we simply type
the command:
cp /home/hadoop-mahout/Downloads/mysql-connector-java-5.1.22/
mysql-connector-java-5.1.22-bin.jar $SQOOP_HOME/lib

2. The preceding command is equivalent (considering our previous input) to the
following command:
cp /home/hadoop-mahout/Downloads/mysql-connector-java-5.1.22/
mysql-connector-java-5.1.22-bin.jar /home/hadoop-mahout/sqoop-
1.4.2.bin__hadoop-0.20/lib

Now it's time to test the import and understand how Sqoop/Hadoop and Mahout
collaborate together.

To briefly recall the whole Hadoop infrastructure, Hadoop has a distributed filesystem that is
shared between the nodes to read and write a sequence file and the text files. We saw in the
previous chapter that when you use a MapReduce job, you can read/write files from HDFS.

Hadoop has its own database HBase for storing data and sharing it during MapReduce jobs,
but in fact there is no equivalent to RDBMS in the Hadoop filesystem. An experienced reader
should have asked themselves a question such as "So how can I move data, both files and the
RDBMS data to HDFS?"

The answer is pretty easy in the case of files. Hadoop comes with a whole series of commands
that mimic the basic commands present on the Linux terminal console.

For example, when you start with your first test on HDFS, a good practice is to format HDFS on
the node you are using. The command to do this is pretty simple; simply open up a terminal
window and type in the following command to format the node you are using:

hadoop namenode -format

In our case, we have a single node set up and the output will be the following:

13/01/15 11:08:22 INFO namenode.FSNamesystem: supergroup=supergroup

13/01/15 11:08:22 INFO namenode.FSNamesystem: isPermissionEnabled=true

13/01/15 11:08:23 INFO namenode.NameNode: Caching file names occurring
more than 10 times

13/01/15 11:08:23 INFO namenode.NNStorage: Storage directory /tmp/hadoop-
hadoop-mahout/dfs/name has been successfully formatted.

Integrating Mahout with an External Datasource

54

13/01/15 11:08:24 INFO namenode.FSImage: Saving image file /tmp/hadoop-
hadoop-mahout/dfs/name/current/fsimage.ckpt_0000000000000000000 using no
compression

13/01/15 11:08:24 INFO namenode.FSImage: Image file of size 128 saved in
0 seconds.

13/01/15 11:08:24 INFO namenode.NNStorageRetentionManager: Going to
retain 1 images with txid >= 0

13/01/15 11:08:24 INFO util.ExitUtil: Exiting with status 0

13/01/15 11:08:24 INFO namenode.NameNode: SHUTDOWN_MSG:

/**

SHUTDOWN_MSG: Shutting down NameNode at hadoop-mahout-laptop/127.0.1.1

**/

We would like to warn the reader that starting the utility from
Hadoop 0.22 has been deprecated. The command line that should
be used is the hdfs one. So for example, our formatting of HDFS
should be done using the following format:
hdfs namenode -format

Usage of all the commands provided for the HDFS utility is out side the scope of this chapter.
We will point the reader who wants to learn more about the commands to the official Hadoop
documentation. But we would like to clarify that when you use a sequence file or a text file to
read/write the operation using a Hadoop MapReduce job; all these actions are saved into
the HDFS.

Let us now start with our first import. Sqoop was designed to use JDBC for connecting to
databases, so it is possible to transform the tables and queries into a different file format and
put them in the HDFS. In this section, we will see how to import all of the mysql tables using
a configuration file.

Before proceeding with the import of one single table or one single SQL query, let us first try to
the import of all of the tables that are present into the bbdatabank MySQL database that we
restored previously.

The console command to do this is the following:

sqoop import-all-tables --connect jdbc:mysql://localhost/bbdatabank
--user root -P --verbose

The most important parameters in the preceding command are as follows:

--connect jdbc:mysql://localhost/bbdatabank

Chapter 3

55

The preceding command basically instructs Sqoop which driver should be used for the
connection. The JAR with the driver should be in the classpath when invoking sqoop. That is
why it is a good idea to put all the JAR files into the $SQOOP_HOME/lib folder that is silently
added to the classpath every time one invokes the Sqoop script.

The value for the parameter connection is written in the JDBC connection string format.
This implies that every database that supports a JDBC connection will be readable by
Sqoop. However an experienced coder should know that every RDBMS system has its own
particularities, so any new connection should be tested. To allow the other parameters, mimic
the mysql command line, so we have:

 f --user: It represents the mysql user who is trying to connect.

 f -P: It is the password that is asked for at runtime. It is also possible even if it is not
a good security practice to use the --password parameter and specify it from the
command line.

 f --verbose: It is used to enable full-logging mode so that we are allowed to see the
outcome and in case of any issue, we are able to control the exception generated.

Instead of calling a long line parameter, it is possible to store everything in a file and then
call Sqoop by only passing the path to the configuration file. So, for example, a file with the
configuration for the last sqoop command should look like as follows:

#

Options file for Sqoop

#

Specifies the tool being invoked

import-all-tables

Connect parameter and value

--connect

jdbc:mysql://localhost/bbdatabank

Username parameter and value

--username

root

-P

--verbose

The call to pass this configuration file should be the following:

sqoop –options-file <path_to_file>

Integrating Mahout with an External Datasource

56

The final results of our import can be browsed in the HDFS filesystem with the following
terminal command:

hadoop fs –ls

The preceding command is used to display the result of the following files:

Found 25 items

-rw-rw-rw- 1 hadoop-mahout hadoop 601404 2013-01-15 14:33 TEAMS

-rw-rw-rw- 1 hadoop-mahout hadoop 601404 2013-01-15 14:33
ALLSTARFULL

-rw-rw-rw- 1 hadoop-mahout hadoop 601404 2013-01-15 14:33
APPEARANCES

-rw-rw-rw- 1 hadoop-mahout hadoop 601404 2013-01-15 14:33
AWARDSMANAGERS

-rw-rw-rw- 1 hadoop-mahout hadoop 601404 2013-01-15 14:33
AWARDSPLAYERS

-rw-rw-rw- 1 hadoop-mahout hadoop 601404 2013-01-15 14:33

Only for this example, we will open the TEAMS file with the following command:

hadoop –fs tail TEAMS

The result should be the following:

,767,668,4.24,1,14,40,4310,1409,154,605,1268,144,135,0.980,"Chicago
Cubs","Wrigley Field",\N,108,108,"CHC","CHN","CHN"

2010,"NL","CIN","CIN","C",1,162,\N,91,71,"Y","N","N",
"N",790,5579,1515,293,30,188,522,1218,93,43,68,50,685,648,4.02,4,9,43,
4359,1404,158,524,1130,86,140,0.988,"Cincinnati Reds","Great American
Ball Park",\N,99,99,"CIN","CIN","CIN"

This format is the comma separated values (CSV) format.

How it works...
From the standard output; in the verbose mode, the import procedure is pretty simple. Every
time you perform an import, all tasks or a single import, Sqoop connects to the database using
the driver class that is in its classpath. This is the reason we put it in the $SQOOP_HOME/
lib folder as this is where every JAR file is automatically loaded. Then based on the import
parameter, Sqoop generates some mapping classes between the RDSM and the target
destination. At the end, this mapper is used to transform the result into the final desired format.

Chapter 3

57

There's more...
In this example, we used a very simplistic approach just to let the reader understand the
importance of the Sqoop tool in a Hadoop environment. But a more high data analysis
approach would be to import only the data necessary for the Mahout analysis.

Sqoop also offers the possibility to import data based on a SQL statement. To test everything,
we will perform these two actions:

 f Creating a Sqoop configuration file

 f Running a Sqoop import using a free SQL statement

We use these techniques to leave the reader with the possibility to test different queries
against the same database without having to retype everything. So open up a text editor and
create the following connection property file for Sqoop:

#

Options file for Sqoop

#

Specifies the tool being invoked

import

Connect parameter and value

--connect

jdbc:mysql://localhost/bbdatabank

Username parameter and value

--username

root

-P

--verbose

Save the file as sqoop.config and place it in the SQOOP_HOME folder (in our case /home/
hadoop-mahout/sqoop-1.4.2.bin__hadoop-0.20).

Integrating Mahout with an External Datasource

58

As you may have noticed, the most important change with respect to the previous
configuration is that we specified the import command, so we do not import every table, but
only a subset of the data contained. This is equal to launching a sqoop import command
line. The MySQL statement to be run is shown in the following screenshot:

This statement returns all of the players in BattingPost that have teams in SeriesPost.
So to put together the two parts that we have and import the results of the query as a CSV file
into HDFS, we launch the following command:

sqoop --options-file /home/hadoop-mahout/sqoop-1.4.2.bin__hadoop-0.20/
sqoop.config –query 'SELECT BattingPost.yearID, BattingPost.teamID,
BattingPost.lgID, BattingPost.round, BattingPost.playerID FROM
BattingPost LEFT JOIN SeriesPost ON SeriesPost.yearID=BattingPost.
yearID AND SeriesPost.round=BattingPost.round AND (teamIDwinner=teamID
OR teamIDloser=teamID) AND (lgIDwinner=lgID OR lgIDloser=lgID) WHERE
SeriesPost.round IS NULL'

The output will be a series of plain CSV text files that are now stored in the HDFS filesystem
and can be used by other MapReduce jobs.

Chapter 3

59

We would like to refer the reader to some good documentation provided by Sqoop at sqoop.
apache.org. We will point out a few other command-line parameters that can serve you
during a real import. These parameters are as follows:

 f --as-sequencefile

 f -m and --num-mappers

 f --target-dir

Considering them one by one, the --as-sequencefile parameter from the query forces the
file to be saved using the Hadoop sequence file key/value format. In this case the key value,
that for Hadoop computation must be unique is automatically generated while all the resultset
is the value for that key.

Sqoop uses the parallelism provided by the MapReduce algorithm to import data from
RDBMS. By default, if no parameter is specified, then four mappers are used to query RDBMS.
But in the case of very large databases that contain hundreds of millions of records, you can
increase the parallel mappers. Be aware of using this parameter indiscriminately because
every mapper opens a dedicated RDMS connection. So, for example, if you put 100 as the
parallel mapper, you increased the open connection number to your 100 units and this could
potentially create some performance issues for other connected sessions.

So when you run a parallel task, the Sqoop mapper should identify a column that needs to
be used for splitting the data to be imported. So, for example, if you decide to import a table
that contains one million rows and four mappers are used to do this, Sqoop needs to uniquely
identify how to assign the 250,000 records for each mapper. By default, Sqoop will identify
the primary key column for doing this. However in a generic SQL statement, there could not
be any primary key column so the --split-by parameter could be used to identify which
column should be used for dividing the workload between the different mappers.

In the last parameter, we observed that HDFS mimics a Linux folder structure; so most of the
time you need an import folder to be used. In this case, you could use the – target-dir
parameter that lets you specify the folder inside HDFS where you need to put the result files
that you import.

Exporting data from HDFS to RDBMS
As we stated in our introduction, we could divide an Hadoop/Mahout mining process into
three main steps:

 f Importing extracted data into the HDFS instance

 f A computational task from Hadoop/Mahout

 f Exporting the result to another RDMBS system where some third-party software will
be in charge of displaying it

Integrating Mahout with an External Datasource

60

So now that we have seen the import part, we need to provide some examples of the export
part. Following a command-line style, we will have to just call the Scoop main script using the
export parameter.

We do not need any more configurations as everything we set up previously is valid also for
exporting purposes.

How to do it…
Let us start with a basic example. Imagine that we have a CSV file in our HDFS that is placed
in the /export/ folder, and whose name is export.csv. We want to store this file in a
MySQL table called results.

The command for doing this is the following:

sqoop export --connect jdbc:mysql://localhost/bbdatabank --user root -P
--verbose --export-dir /export/ --table results

As we can see, we have some optional parameters that can go hand in hand with just the
export command, once it is set do the job. But as with the first import example, we need
to give the reader some clarification.

How it works...
Since the destination is an RDBMS table, we will warn the reader that the destination table
must exist in the target database. Sqoop is not able to create the destination table by itself.
Without any other specification, Sqoop creates a set of INSERT INTO sql statements
that will be performed on the target table. When running the Sqoop export command the
mandatory parameters are as follows:

 f --export-dir

 f --table

If you have some prior experience with using SQL from Java and JDBC, you will for sure be
aware of the potential problems that might arise when performing insert statements in a
generic table. To summarize the potential issues, we have the following:

 f Duplicate insertions or problems related to double insert of the same value

 f A null value in required or not-null value fields

To handle this problem, Sqoop provides some more parameters that can be finetuned to avoid
such problems. Let us examine them separately.

Chapter 3

61

Returning to potential problems, let us see how we can manage duplicate insert
statements. Sqoop, by default, creates only the insert statement so in case two of your
source files contain the same record, an insert statement with a duplicate key will be
created. So to avoid any potential runtime exception, you could use the -- update-key
argument. This parameter lets you define the primary key column on your target table that can
be used for doing updates instead of creating insertions.

To give you an example, we have the source CSV files with the rows' structure as follows:

Id, movie, score
1,1,0.1
2,1,10

So we create the table result with the mysql command as follows:

Create table results
(
Id int primary key not null
,movie int not null
,score float not null
)

If everything goes smoothly, you won't have any problems, but in case there are to with ID 1
then your export will generate a duplicate key exception. You have two possibilities. The first
one is to use the –update-key argument and execute the following Sqoop command:

sqoop export --connect jdbc:mysql://localhost/bbdatabank --user root -P
--verbose --export-dir /export/ --table results --update-key id

The preceding command will force Sqoop, when doing the insert, to generate a SQL command
like the following:

update result set movie=<movie_value>, score=<score_value> where id = ..

But this will not completely solve the problem. Even if you don't get an error, in the case of
your first import or newly added ID with respect to previous one if the ID is not present into the
destination table. So to correctly set up a workflow, you should first export the data to populate
the table and then another one with the update-key to avoid the duplicated key exception.

Probably the most useful parameter in this context that can manage insert and update
statements is the --update- mode coupled with --update-key. To clarify things, let us
consider the following Sqoop export command:

sqoop export --connect jdbc:mysql://localhost/bbdatabank --user root -P
--verbose --export-dir /export/ --table results --update-key id –update-
mode allowinsert

Integrating Mahout with an External Datasource

62

In this case, by specifying the allowinsert mode, the import flow will follow this logic:

 f Check whether the value for the update-key parameter exists on the target table

 f If yes, create and update the command to update the information

 f Otherwise create an insert statement

This will avoid any potential situation but remember that once you start to use the updated
sentence only the last update is will have the final value.

When dealing with insert and update, the value of the field to be updated on a table needs
to be carefully considered. If you allow, for example, a string field in the target destination
table to accept null values, then you have to manage the null string in the corresponding source.
The Sqoop export command provides a bunch of additional parameters to manage the input's
delimiters and the null value; we refer the reader once again to the Sqoop website for the
complete documentation. We cite only for reference two of the arguments that can be used:

 f --input-fields-terminated-by: This argument if specified tells which
character on the input file to be considered as field separator default is comma.

 f --input-lines-terminated-by: This argument specifies which is the line
separator. The default value is \r.

Considering the null value we have:

 f --input-null-string: If this argument is specified, it instructs the export utility
which string is to be considered as the null value. Note that by default, null is
interpreted as null string.

 f --input-null-non-string: If this argument is not specified (default), both empty
string and null values will be considered null for the SQL statement.

Now that we have seen the two flux, both import and export, we could take a look at the
Sqoop job and the Sqoop API.

Creating a Sqoop job to deal with RDBMS
Now that you have seen how the import/export utility named Sqoop works, we are ready to
talk about creating a Sqoop job. From a developer's and even a maintenance point of view,
once you correctly create your Sqoop statement, you need to invoke it from the command line.
Sqoop jobs are particularly useful when you needs to update the final data destination from
the input source that have changed. Typically, you need to set up a schedule job that runs
through the night to extract all the new information that was stored in the source from the
previous day. Once tested, the command line can be easily called by a cron schedule.

Chapter 3

63

How to do it...
Sqoop offers a command-line parameter that allows us to create a configured job that can be
invoked every time, without giving the command-line parameters that are meant to execute
the import/export utility.

Moving from words to coding, let us create our first import Sqoop job:

1. As we saw, our first import was as follows:
sqoop import-all-tables --connect jdbc:mysql://localhost/
bbdatabank --user root -P --verbose

2. To create a job that does the same thing, we type the following command in
our console:
sqoop job --create myimportjob -- import-all-tables --connect
jdbc:mysql://localhost/bbdatabank --user root -P --verbose

How it works...
We saw a command that creates a job named myimportjob. The jobs are saved in a
metastore repository that is a filesystem location, by default located in the $SQOOP_HOME/.
sqoop directory.

There's more...
Once you create a job, it can be executed by giving the exec argument as shown in the
following command that executes the myimportjob command:

sqoop job --exec myimportjob

To display the saved job, you can use the following command:

sqoop job --list

To display the configuration of the myimport job, the command will look like:

sqoop job --show myjob

At the end, to delete the saved job, use the following command:

sqoop job --delete myjob

Integrating Mahout with an External Datasource

64

So once you have created your job, you can manage it in this way. In case, you need to
schedule a job execution by using the cron utility to be able to execute a scheduled job
in the production environment.

We warn the reader that, apart from the command-line utility, one job is saved in the Sqoop
repository by default. This storage does not save the passwords that are required when the
job runs. So if you create a job that needs passwords to be stored, you will be asked for the
password during job execution. Considering a scheduled job, you could be forcing Sqoop
to store passwords by modifying a configuration file. This is not a secure practice as the
Sqoop metastore is not the most secure one. But you can modify this setting by opening the
sqoop-site.xml file; you just need to uncomment the following tag:

 <property>
 <name>sqoop.metastore.client.record.password</name>
 <value>true</value>
 <description>If true, allow saved passwords in the metastore.
 </description>
 </property>

Considering that Sqoop is basically some JARs interfaced by command-line utilities, it is
possible to embed it in a Java application. We will see in the next section how to embed
Sqoop into your Java code.

Importing data using Sqoop API
Sqoop provides a series of APIs that can be used to launch a Sqoop MapReduce
import/export job from your Java code. As usual, we will use Maven on our NetBeans
development environment to link the correct JARs.

Getting ready
Fire up NetBeans and create a new Maven project named chapter 3, as we did in the recipes
in Chapter 1, Mahout is Not So Difficult!, and Chapter 2, Using Sequence Files – When and
Why?. Then we link the Sqoop dependency using Maven, so right-click on the Dependencies
folder and click on the Add Dependency item. On the form that appears, fill in the details as
shown in the following screenshot:

Chapter 3

65

Then click on Add and you should see the JAR file in your Dependencies folder icon, as shown
in the following screenshot:

How to do it…
Now that we have configured our Maven project, it is now time to write some lines of code to
see how to use Sqoop outside the command-line utility.

Integrating Mahout with an External Datasource

66

We will add our code to the default App.java class. So double-click on it and add the
following code to the main method:

 SqoopOptions o = new SqoopOptions();
 o.setConnectString(null);
 o.setExportDir("/tmp/piero");
 String[] arguments = new String[10];
 ImportAllTablesTool t = new ImportAllTablesTool();
 int r;
 r = Sqoop.runTool(arguments);

How it works...
As you can see, we create a SqoopOptions object that maps the same arguments that are
involved in the command-line utility. Then we create instances of the type of jobs that we need
to run. The possible jobs are the following:

 f ImportAllTablesTool

 f ImportTool

 f ExportTool

The final step is to use the runTool method for every possible job's object. The result
will be stored into an int type to allow the coder to understand if the job completion was
successfully done.

We provided just a short recipe on how to use Sqoop API. To understand what is going on
a simple but effective method, download the source code and see how it interacts with the
command line.

If you open it up with a text editor, you should see the last line that invokes the exec
command, which is as follows:

exec ${HADOOP_HOME}/bin/hadoop com.cloudera.sqoop.Sqoop "$@"

Thus, the entry point for every Sqoop command is the main class Sqoop inside the com.
cloudera.sqoop package. We suggest willing readers take a look at the book's code to
get a deeper understanding of what is going on behind the scenes.

4
Implementing the Naϊve

Bayes classifier
in Mahout

In the previous chapters, we got familiar with Mahout and the way of using sequence file and
connecting it to the external data sources. However, we did not go in much details on the
kind of data mining algorithm that are available on the Mahout framework. Starting from this
chapter, we are now entering the core of the Mahout framework and its available algorithms.

In this chapter, we will implement the Naïve Bayes classifier for creating clusters and
aggregating unstructured information in a manageable way.

We will cover the following recipes in this chapter:

 f Using the Mahout text classifier to demonstrate the basic use case
 f Using the Naïve Bayes classifier from code
 f Using Complementary Naïve Bayes from the command line
 f Coding the Complementary Naïve Bayes classifier

Introduction
Bayes was a Presbyterian priest who died giving his "Tractatus Logicus" to the prints in 1795.
The interesting fact is that we had to wait a whole century for the Boolean calculus before
Bayes' work came to light in the scientific community.

The corpus of Bayes' study was conditional probability. Without entering too much into
mathematical theory, we define conditional probability as the probability of an event that
depends on the outcome of another event.

Implementing the Naϊve Bayes classifier in Mahout

68

In this chapter, we are dealing with a particular type of algorithm, a classifier algorithm. Given
a dataset, that is, a set of observations of many variables, a classifier is able to assign a new
observation to a particular category. So, for example, consider the following table:

Outlook Temperature Temperature Humidity Humidity Windy Play

Numeric Nominal Numeric Nominal

Overcast 83 Hot 86 High FALSE Yes
Overcast 64 Cool 65 Normal TRUE Yes
Overcast 72 Mild 90 High TRUE Yes
Overcast 81 Hot 75 Normal FALSE Yes
Rainy 70 Mild 96 High FALSE Yes
Rainy 68 Cool 80 Normal FALSE Yes
Rainy 65 Cool 70 Normal TRUE No
Rainy 75 Mild 80 Normal FALSE Yes
Rainy 71 Mild 91 High TRUE No
Sunny 85 Hot 85 High FALSE No
Sunny 80 Hot 90 High TRUE No
Sunny 72 Mild 95 High FALSE No
Sunny 69 Cool 70 Normal FALSE Yes
Sunny 75 Mild 70 Normal TRUE Yes

The table itself is composed of a set of 14 observations consisting of 7 different categories:
temperature (numeric), temperature (nominal), humidity (numeric), and so on. The classifier
takes some of the observations to train the algorithm and some as testing it, to create a
decision for a new observation that is not contained in the original dataset.

There are many types of classifiers that can do this kind of job. The classifier algorithms are
part of the supervised learning data-mining tasks that use training data to infer an outcome.
The Naïve Bayes classifier uses the assumption that the fact, on observation, belongs to a
particular category and is independent from belonging to any other category.

Other types of classifiers present in Mahout are the logistic regression, random forests, and
boosting. Refer to the page https://cwiki.apache.org/confluence/display/
MAHOUT/Algorithms for more information.

This page is updated with the algorithm type, actual integration in Mahout, and other useful
information. Moving out of this context, we could describe the Naïve Bayes algorithm as a
classification algorithm that uses the conditional probability to transform an initial set of
weights into a weight matrix, whose entries (row by column) detail the probability that one
weight is associated to the other weight. In this chapter's recipes, we will use the same
algorithm provided by the Mahout example source code that uses the Naïve Bayes classifier to
find the relation between works of a set of documents.

Chapter 4

69

Our recipe can be easily extended to any kind of document or set of documents. We will
only use the command line so that once the environment is set up, it will be easy for you to
reproduce our recipe. Our dataset is divided into two parts: the training set and the testing
set. The training set is used to instruct the algorithm on the relation it needs to find. The
testing set is used to test the algorithm using some unrelated input. Let us now get a
first-hand taste of how to use the Naïve Bayes classifier.

Using the Mahout text classifier to
demonstrate the basic use case

The Mahout binaries contain ready-to-use scripts for using and understanding the classical
Mahout dataset. We will use this dataset for testing or coding. Basically, the code is nothing
more than following the Mahout ready-to-use script with the corrected parameter and the path
settings done. This recipe will describe how to transform the raw text files into weight vectors
that are needed by the Naïve Bayes algorithm to create the model.

The steps involved are the following:

 f Converting the raw text file into a sequence file

 f Creating vector files from the sequence files

 f Creating our working vectors

Getting ready
The first step is to download the datasets. The dataset is freely available at the following link:
http://people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.gz.
For classification purposes, other datasets can be found at the following URL:
http://sci2s.ugr.es/keel/category.php?cat=clas#sub2.

The dataset contains a post of 20 newsgroups dumped in a text file for the purpose of
machine learning. Anyway, we could have also used other documents for testing purposes,
but we will suggest how to do this later in the recipe.

Before proceeding, in the command line, we need to set up the working folder where we
decompress the original archive to have shorter commands when we need to insert the full
path of the folder.

In our case, the working folder is /mnt/new; so, our working folder's command-line variables
will be set using the following command:

export WORK_DIR=/mnt/new/

Implementing the Naϊve Bayes classifier in Mahout

70

You can create a new folder and change the WORK_DIR bash variable accordingly.

Do not forget that to have these examples running, you
need to run the various commands with a user that has the
HADOOP_HOME and MAHOUT_HOME variables in its path just
as we set in Chapter 1, Mahout is Not So Difficult!.

To download the dataset, we only need to open up a terminal console and give the
following command:

wget http://people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.gz

Once your working dataset is downloaded, decompress it using the following command:

tar –xvzf 20news-bydate.tar.gz

You should see the folder structure as shown in the following screenshot:

The second step is to sequence the whole input file to transform them into Hadoop sequence
files. To do this, you need to transform the two folders into a single one. However, this is only a
pedagogical passage, but if you have multiple files containing the input texts, you could parse
them separately by invoking the command multiple times. Using the console command, we
can group them together as a whole by giving the following command in sequence:

rm -rf ${WORK_DIR}/20news-all

 mkdir ${WORK_DIR}/20news-all

 cp -R ${WORK_DIR}/20news-bydate*/*/* ${WORK_DIR}/20news-all

Chapter 4

71

Now, we should have our input folder, which is the 20news-all folder, ready to be used:

The following screenshot shows a bunch of files, all in the same folder:

By looking at one single file, we should see the underlying structure that we will transform.
The structure is as follows:

From: xxx
Subject: yyyyy
Organization: zzzz
X-Newsreader: rusnews v1.02
Lines: 50
jaeger@xxx (xxx) writes:
>In article xxx writes:
>>zzzz "How BCCI adapted the Koran rules of banking". The
>>Times. August 13, 1991.
>
> So, let's see. If some guy writes a piece with a title that implies
> something is the case then it must be so, is that it?

Implementing the Naϊve Bayes classifier in Mahout

72

We obviously removed the e-mail address, but you can open this file to see its content. For any
newsgroup of 20 news items that are present on the dataset, we have a number of files, each
of them containing a single post to a newsgroup without categorization.

Following our initial tasks, we need to now transform all these files into Hadoop sequence
files. To do this, you need to just type the following command:

./mahout seqdirectory -i ${WORK_DIR}/20news-all -o ${WORK_DIR}/20news-
seq

This command brings every file contained in the 20news-all folder and transforms them
into a sequence file. As you can see, the number of corresponding sequence files is not one to
one with the number of input files. In our case, the generated sequence files from the original
15417 text files are just one chunck-0 file. It is also possible to declare the number of output
files and the mappers involved in this data transformation. We invite the reader to test the
different parameters and their uses by invoking the following command:

./mahout seqdirectory --help

The following table describes the various options that can be used with the
seqdirectory command:

Parameter Description
--input (-i) input This gives the path to the job input directory.
--output (-o) output The directory pathname for the output.
--overwrite (-ow) If present, overwrite the output directory before running

the job.
--method (-xm) method The execution method to use: sequential or mapreduce.

The default is mapreduce.
--chunkSize (-chunk)
chunkSize

The chunkSize values in megabyte. The default
is 64 Mb.

--fileFilterClass
(-filter)
fileFilterClass

The name of the class to use for file parsing.
The default is org.apache.mahout.text.
PrefixAdditionFilter.

--keyPrefix (-prefix)
keyPrefix

The prefix to be prepended to the key of the
sequence file.

--charset (-c) charset The name of the character encoding of the input files.
The default is UTF-8.

--overwrite (-ow) If present, overwrite the output directory before running
the job.

--help (-h) Prints the help menu to the command console.
--tempDir tempDir If specified, tells Mahout to use this as a temporary folder.
--startPhase startPhase Defines the first phase that needs to be run.
--endPhase endPhase Defines the last phase that needs to be run.

Chapter 4

73

To examine the outcome, you can use the Hadoop command-line option fs. So, for example, if
you would like to see what is in the chunck-0 file, you could type in the following command:

hadoop fs -text $WORK_DIR/20news-seq/chunck-0 | more

In our case, the result is as follows:

/67399 From:xxx
Subject: Re: Imake-TeX: looking for beta testers
Organization: CS Department, Dortmund University, Germany
Lines: 59
Distribution: world
NNTP-Posting-Host: tommy.informatik.uni-dortmund.de

In article <xxxxx>,
yyy writes:
|> As I announced at the X Technical Conference in January, I would
like
|> to
|> make Imake-TeX, the Imake support for using the TeX typesetting
system,
|> publically available. Currently Imake-TeX is in beta test here at
the
|> computer science department of Dortmund University, and I am
looking
|> for
|> some more beta testers, preferably with different TeX and Imake
|> installations.

The Hadoop command is pretty simple, and the syntax is as follows:

hadoop fs –text <input file>

In the preceding syntax, <input file> is the sequence file whose content you will see. Our
sequence files have been created, and until now, there has been no analysis of the words and
the text itself. The Naïve Bayes algorithm does not work directly with the words and the raw text,
but with the weighted vector associated to the original document. So now, we need to transform
the raw text into vectors of weights and frequency. To do this, we type in the following command:

./mahout seq2sparse -i ${WORK_DIR}/20news-seq -o ${WORK_DIR}/20news-
vectors -lnorm -nv -wt tfidf

The following command parameters are described briefly:

 f The -lnorm parameter instructs the vector to use the L_2 norm as a distance

 f The -nv parameter is an optional parameter that outputs the vector as
namedVector

 f The -wt parameter instructs which weight function needs to be used

Implementing the Naϊve Bayes classifier in Mahout

74

We end the data-preparation process with this step. Now, we have the weight vector files that
are created and ready to be used by the Naïve Bayes algorithm. We will clear a little while this
last step algorithm. This part is about tuning the algorithm for better performance of the Naïve
Bayes classifier.

How to do it…
Now that we have generated the weight vectors, we need to give them to the training
algorithm. But if we train the classifier against the whole set of data, we will not be able
to test the accuracy of the classifier.

To avoid this, you need to divide the vector files into two sets called the 80-20 split. This is a
good data-mining approach because if you have any algorithm that should be instructed on a
dataset, you should divide the whole bunch of data into two sets: one for training and one for
testing your algorithm.

A good dividing percentage is shown to be 80 percent and 20 percent, meaning that the
training data should be 80 percent of the total while the testing ones should be the remaining
20 percent.

To split data, we use the following command:

./mahout split

-i ${WORK_DIR}/20news-vectors/tfidf-vectors

 --trainingOutput ${WORK_DIR}/20news-train-vectors

 --testOutput ${WORK_DIR}/20news-test-vectors

 --randomSelectionPct 40 --overwrite --sequenceFiles -xm sequential

As result of this command, we will have two new folders containing the training and testing
vectors. Now, it is time to train our Naïves Bayes algorithm on the training set of vectors, and
the command that is used is pretty easy:

 ./mahout trainnb

 -i ${WORK_DIR}/20news-train-vectors -el

 -o ${WORK_DIR}/model

 -li ${WORK_DIR}/labelindex

 -ow

Once finished, we have our training model ready to be tested against the remaining 20
percent of the initial input vectors. The final console command is as follows:

 ./mahout testnb

 -i ${WORK_DIR}/20news-test-vectors

 -m ${WORK_DIR}/model

 -l ${WORK_DIR}/labelindex\

 -ow -o ${WORK_DIR}/20news-testing

Chapter 4

75

The following screenshot shows the output of the preceding command:

How it works...
We have given certain commands and we have seen the outcome, but you've done this
without an understanding of why we did it and above all, why we chose certain parameters.
The whole sequence could be meaningless, even for an experienced coder.

Let us now go a little deeper in each step of our algorithm. Apart from downloading the data,
we can divide our Naïve Bayes algorithm into three main steps:

 f Data preparation

 f Data training

 f Data testing

Implementing the Naϊve Bayes classifier in Mahout

76

In general, these are the three procedures for mining data that should be followed. The data
preparation steps involve all the operations that are needed to create the dataset in the format
that is required for the data mining procedure. In this case, we know that the original format
was a bunch of files containing text, and we transformed them into a sequence file format. The
main purpose of this is to have a format that can be handled by the map reducing algorithm.
This phase is a general one as the input format is not ready to be used as it is in most cases.
Sometimes, we also need to merge some data if they are divided into different sources.
Sometimes, we also need to use Sqoop for extracting data from different datasources.

Data training is the crucial part; from the original dataset, we extract the information that is
relevant to our data mining tasks, and we bring some of them to train our model. In our case,
we are trying to classify if a document can be inserted in a certain category based on the
frequency of some terms in it. This will lead to a classifier that using another document can
state if this document is under a previously found category. The output is a function that is
able to determinate this association.

Next, we need to evaluate this function because it is possible that one good classification
in the learning phase is not so good when using a different document. This three-phased
approach is essential in all classification tasks. The main difference relies on the type of
classifier to be used in the training and testing phase. In this case, we use Naïve Bayes, but
other classifiers can be used as well. In the Mahout framework, the available classifiers are
Naïve Bayes, Decision Forest, and Logistic Regression.

As we have seen, the data preparation consists basically of creating two series of files that will
be used for training and testing purposes. The step to transform the raw text file into a Hadoop
sequence format is pretty easy; so, we won't spend too long on it. But the next step is the
most important one during data preparation. Let us recall it:

mahout seq2sparse -i ${WORK_DIR}/20news-seq -o ${WORK_DIR}/20news-
vectors -lnorm -nv -wt tfidf

This computational step basically grabs the whole text from the chunck-0 sequence file and
starts parsing it to extract information from the words contained in it. The input parameters
tell the utility to work in the following ways:

 f The -i parameter is used to declare the input folder where all the sequence files
are stored

 f The -o parameter is used to create the output folder where the vector containing
the weights is stored

 f The -nv parameter tells Mahout that the output format should be in the
namedVector format

 f The -wt parameter tells which frequency function to use for evaluating the weight
of every term to a category

 f The -lnorm parameter is a function used to normalize the weights using the
L_2 distance

Chapter 4

77

 f The -ow: parameter overwrites the previously generated output results

 f The -m: parameter gives the minimum log-likelihood ratio

The whole purpose of this computation step is to transform the sequence files that contain
the documents' raw text in the sequence files containing vectors that count the frequency of
the term. Obviously, there are some different functions that count the frequency of a term
within the whole set of documents. So, in Mahout, the possible values for the wt parameter
are tf and tfidf. The Tf value is the simpler one and counts the frequency of the term. This
means that the frequency of the iW term inside the set of documents is the ratio between the
total occurrence of the word over the total number of words. The second one considers the
sum of every term frequency using a logarithmic function like this one:

logi i
i

NW TF
DF

=

In the preceding formula, iW is the TF-IDF weight of the word indexed by i. N is the total
number of documents. iDF is the frequency of the i word in all the documents.

In this preprocessing phase, we notice that we index the whole corpus of documents so that
we are sure that even if we divide or split in the next phase, the documents are not affected.
We compute a word frequency; this means that the word was contained in the training or
testing set.

So, the reader should grasp the fact that changing this parameter can affect the final weight
vectors; so, based on the same text, we could have very different outcomes.

The lnorm value basically means that while the weight can be a number ranging from 0 to an
upper positive integer, they are normalized to 1 as the maximum possible weight for a word
inside the frequency range. The following screenshot shows the output of the output folder:

Implementing the Naϊve Bayes classifier in Mahout

78

Various folders are created for storing the word count, frequency, and so on. Basically, this is
because the Naïve Bayes classifier works by removing all periods and punctuation marks from
the text. Then, from every text, it extracts the categories and the words.

The final vector file can be seen in the tfidf-vectors folder, and for dumping vector files to
normal text ones, you can use the vectordump command as follows:

mahout vectordump -i ${WORK_DIR}/20news-vectors/tfidf-vectors/
part-r-00000 –o

${WORK_DIR}/20news-vectors/tfidf-vectors/part-r-00000dump

The dictionary files and word files are sequence files containing the association within the
unique key/word created by the MapReduce algorithm using the command:

hadoop fs -text $WORK_DIR/20news-vectors/dictionary.file-0 | more

one can see for example

adrenal_gland 12912

adrenaline 12913

adrenaline.com 12914

The splitting of the dataset into training and testing is done by using the split command-
line option of Mahout. The interesting parameter in this case is that randomSelectionPct
equals 40. It uses a random selection to evaluate which point belongs to the training or the
testing dataset.

Now comes the interesting part. We are ready to train using the Naïve Bayes algorithm. The
output of this algorithm is the model folder that contains the model in the form of a binary
file. This file represents the Naïve Bayes model that holds the weight Matrix, the feature and
label sums, and the weight normalizer vectors generated so far.

Now that we have the model, we test it on the training set. The outcome is directly shown on
the command line in terms of a confusion matrix. The following screenshot shows the format
in which we can see our result.

Chapter 4

79

Finally, we test our classifier on the test vector generated by the split instruction. The output in
this case is a confusion matrix. Its format is as shown in the following screenshot:

We are now going to provide details on how this matrix should be interpreted. As you can see,
we have the total classified instances that tell us how many sentences have been analyzed.
Above this, we have the correctly/incorrectly classified instances. In our case, this means
that on a test set of weighted vectors, we have nearly 90 percent of the corrected classified
sentences against an error of 9 percent.

But if we go through the matrix row by row, we can see at the end that we have different
newsgroups. So, a is equal to alt.atheism and b is equal to comp.graphics.

So, a first look at the detailed confusion matrix tells us that we did the best in classification
against the rec.sport.hockey newsgroup, with a value of 418 that is the highest we have.
If we take a look at the corresponding row, we understand that of these 418 classified
sentences, we have 403/412; so, 97 percent of all of the sentences were found in the rec.
sport.hockey newsgroup. But if we take a look at the comp.os.ms-windows.miscwe
newsgroup, we can see overall performance is low. The sentences are not so centered around
the same new newsgroup; so, it means that we find and classify the sentences in ms-windows
in another newsgroup, and so we do not have a good classification.

This is reasonable as sports terms like "hockey" are really limited to the hockey world,
while sentences about Microsoft could be found both on Microsoft specific newsgroups
and in other newsgroups.

We encourage you to give another run to the testing phase on the training phase to see the
output of the confusion matrix by giving the following command:

 ./bin/mahout testnb

 -i ${WORK_DIR}/20news-train-vectors

 -m ${WORK_DIR}/model

 -l ${WORK_DIR}/labelindex

 -ow -o ${WORK_DIR}/20news-testing

Implementing the Naϊve Bayes classifier in Mahout

80

As you can see, the input folder is the same for the training phase, and in this case, we have
the following confusion matrix:

In this case, we can see it using the same set both as the training and testing phase. The first
consequence is that we have a rise in the correctly classified sentences by an order of 10
percent, which is even bigger if you remember that in terms of weighted vectors with respect
to the testing phase, we have a size that is four times greater. But probably the most
important thing is that the best classification has now moved from the hockey newsgroup to
the sci.electronics newsgroup.

There's more
We use exactly the same procedure used by the Mahout examples contained in the binaries
folder that we downloaded. But you should now be aware that starting all process need only
to change the input files from the initial folder. So, for the willing reader, we suggest you
download another raw text file and perform all the steps in another type of file to see the
changes that we have compared to the initial input text.

We would suggest that non-native English readers also look at the differences that we
have by changing the initial input set with one not written in English. Since the whole text
is transformed using only weight vectors, the outcome does not depend on the difference
between languages but only on the probability of finding certain word couples.

Chapter 4

81

As a final step, using the same input texts, you could try to change the way the algorithm
normalizes and counts the words to create the vector sparse weights. This could be easily
done by changing, for example, the -wt tfidf parameter into the command line Mahout
seq2sparce. So, for example, an alternative run of the seq2sparce Mahout could be the
following one:

mahout seq2sparse -i ${WORK_DIR}/20news-seq -o ${WORK_DIR}/20news-
vectors -lnorm -nv -wt tfidf

Finally, we not only choose to run the Naïve Bayes classifier for classifying words in a text
document but also the algorithm that uses vectors of weights so that, for example, it would
be easy to create your own vector weights.

Using the Naïve Bayes classifier from code
Now, we have used Mahout with the command-line option for the Naïve Bayes classification.
In this recipe, we will code the same classifier that we used in the previous recipe, but we
will call and use it directly from the Java code instead of the command line. We will see how
to tune parameters and how to extend the possible configuration parameter. We will also
see how to use the Naïve Bayes classifier from the code, and we will show you the possibility
of changing some parameters that cannot be modified using the command line. Coding a
classifier using the MapReduce framework could be a difficult task, but it would be better if
you could use the already coded classifier to fine-tune your data-mining tasks.

Getting ready
To be ready for the coding part, we have to create a new project on NetBeans and link
the correct POM files for the dependency libraries that we are going to use. So, using the
Netbeans Maven functionality, create a new Maven project called chapter04. Now, you
should have something similar to the following screenshot:

Implementing the Naϊve Bayes classifier in Mahout

82

Now, it is time to add the dependencies needed to invoke the Naïve Bayes classifier. To do
this, right-click on the Dependencies folder and choose the Add Dependency item option
from the pop-up menu. The following screenshot shows the form where you type the mahout
word in the Search text so that the system will display the local Mahout compiled source. The
JARs required are mahout-core and mahout-math.

How to do it…
Now, we have everything that we need to code our example. Carry out the following steps in
order to achieve this:

1. Open up the app.java default file. First, we need to set the parameters to be used:
 final BayesParameters params = new BayesParameters();
 params.setGramSize(1);
 params.set("verbose", "true");
 params.set("classifierType", "bayes");
 params.set("defaultCat", "OTHER");

Chapter 4

83

 params.set("encoding", "UTF-8");
 params.set("alpha_i", "1.0");
 params.set("dataSource", "hdfs");
 params.set("basePath", "/tmp/output");

2. Then, we need to train the classifier by providing the input and output folders for the
input to be used and for the output of the model, respectively:
 try {
 Path input = new Path("/tmp/input");
 TrainClassifier.trainNaiveBayes(input, "/tmp/output",
params);

3. Next, we need to use the Bayes algorithm to evaluate the classifier as follows:
 Algorithm algorithm = new BayesAlgorithm();
 Datastore datastore =
 new InMemoryBayesDatastore(params);
 ClassifierContext classifier =
 new ClassifierContext(algorithm, datastore);
 classifier.initialize();

 final BufferedReader reader =
 new BufferedReader(new FileReader(args[0]));
 String entry = reader.readLine();

 while(entry != null) {
 List< String > document = new NGrams(entry,
 Integer.parseInt(params.get("gramSize")))
 .generateNGramsWithoutLabel();

 ClassifierResult result =
 classifier.classifyDocument(
 document.toArray(new String[document.size()]
),
 params.get("defaultCat"));

 entry = reader.readLine();
 }
 } catch(final IOException ex) {
 ex.printStackTrace();
 } catch(final InvalidDatastoreException ex) {
 ex.printStackTrace();
 }

Simple, isn't it? Once compiled, check the input files and observe the output of the code that
is provided. We are now ready to go into the details to understand the differences between
the Mahout classifiers and to underline the possibilities offered by them.

Implementing the Naϊve Bayes classifier in Mahout

84

How it works...
As we can see, we have the following actions:

 f Initializing the parameters for the trainer

 f Reading the input files

 f Training the classifier using the parameters and the input files

 f Output the results

First of all, we initialize the parameters' objects that store every available input parameter for
the classifier. We should notice the following parameters:

params.set("classifierType", "bayes");

Until now, we have used the Naïve Bayes classifier. Once we initialize the parameters, we are
ready to move to the core part. A TrainClassifier .trainNaiveBayes static method is
invoked by passing the parameters and the input path to the weight vector files.

This phase builds the binary model file that is saved into the output folder and defines itself
into the params object using the following code:

params.set("basePath", "/tmp/output");

So, we now have our model saved and stored.

Try creating two different classifiers to be trained on the same
input vector to have a model ready to be tested on a different
set of data. This idea is also a good one in the development
phase before going into production to evaluate which is the
best algorithm to be used for training purposes.

As a final step, we need to read the input file and generate NGrams and use this according to
the classifier used. This can be done using the following code:

 final BufferedReader reader = new BufferedReader(new
FileReader(args[0]));
 String entry = reader.readLine();

 while(entry != null) {
 List< String > document = new NGrams(entry,
 Integer.parseInt(params.get("gramSize"))
)
 .generateNGramsWithoutLabel();

 ClassifierResult result = classifier.classifyDocument(

Chapter 4

85

 document.toArray(new String[document.
size()]),
 params.get("defaultCat"));

 entry = reader.readLine();

We need to provide a few details on how the Naïve Bayes classifier works. In a sentence,
a group of words is called an n-grams. A single word is a 1-gram; but, for example, Barack
Obama, even if composed of two 1-grams, is normally associated, so it is counted as a 1-gram.

So, in this case, the minimum gram size is set to 1 in the parameters with the following code:

 params.setGramSize(1);

However, you can change this minimum size for the grams so as to avoid considering single
words but counting the frequency of at least a couple of words combined instead. So, setting
setGramSize to 1 means that "Obama" as well as "Barack" is counted as one while with 2,
the occurrence "Barack Obama" will be see as one in frequency count.

Now, we can test against a different data set by re-using Mahout's testnn command-line option
by giving the generated model and the input corpus document provided for testing. This will
display the confusion matrix that will allow us to evaluate better how the training took place.

There's more
Text classification is probably one of the most interesting tasks in a classification algorithm.
This is because teaching a machine to make sense of a document the way we humans do is
never easy.

A lot of settings eventuate to create a good classifier. Let us review them briefly:

 f The language of the documents

 f The size of the documents

 f The way we create vectors

 f The way we divide and create the training and testing sets

Only to give some hits, if we have a document with many sentences written in a different
language, the classification task is not so easy. The size of the documents is another
important task; obviously, the more you have the better it is, but beware. We do not have a
cluster large enough to test this, but as pointed out by the Mahout project site, the Naïve
Bayes algorithm and the Complementary Naïve Bayes algorithm can handle millions to
hundreds of millions of documents.

Implementing the Naϊve Bayes classifier in Mahout

86

As we mentioned earlier, the vectors can be created using different ways to evaluate the word
count and the granularity. For the willing reader, we point out that there are other techniques
that can be used for counting words or to decide the best frequency to be used for counting
occurrences. We encourage you to take a look at the source code of Mahout to see how it is
possible to extend the analyzer class to add some of these evaluation methods.

When evaluating a classifier, we also recommend you to give multiple runs of the algorithm
using the code we provided. These multiple runs give the trainer an algorithm to have different
outcomes so that it would be possible to evaluate better which parameter combination is the
best one for the input dataset.

Using Complementary Naïve Bayes from
the command line

We are now ready to use the Complementary Naïve Bayes Mahout classifier from the
command line.

Getting ready
We are ready with the input because we will use the same input that we used for the Naïve
Bayes classifier. So, this recipe will be prepared for the same way that we prepared for the
Naïve Bayes classifier. So, in the ${WORK_DIR}/20news-train-vectors folder, you should
have the training vectors with the weight coded as a key/value pair that is ready to be used.

How to do it…
Now, we can enter the following command from a terminal console:

./mahout trainnb

 -i ${WORK_DIR}/20news-train-vectors -el

 -o ${WORK_DIR}/model

 -li ${WORK_DIR}/labelindex

 -ow cbayes

Chapter 4

87

The output will be a model created as a binary file in the model subfolder. To test the
Complementary Naïve Bayes classifier, we give the following command:

./bin/mahout testnb

 -i ${WORK_DIR}/20news-train-vectors

 -m ${WORK_DIR}/model

 -l ${WORK_DIR}/labelindex

 -ow -o ${WORK_DIR}/20news-testing

 cbayes

How it works…
The Complementary Naïve Bayes classifier is linked to the Naïve Bayes classifier. Basically, the
main difference between the two is how they evaluate the final weight of the classifier. In the
Complementary Naïve Bayes case, the weight is calculated using the following formula:

Weight = Log [(Sigma_j - W-N-Tf-Idf + alpha_i) / (Sigma_jSigma_k - Sigma_k + N)]

So you could easily change the type of algorithm from Naïve Bayes to Complementary Naïve
Bayes by only changing a parameter.

See also
 f You can refer to the Tackling the Poor Assumptions of Naïve Bayes Text Classifiers

paper for an evaluation of the differences between the two classifiers. It is available
at http://people.csail.mit.edu/jrennie/papers/icml03-nb.pdf.

Coding the Complementary Naïve Bayes
classifier

Now that we have seen how the Complementary Naïve Bayes classifier can be invoked from
the command line, we are ready to use it from our Java code.

Getting ready
Create a new Maven project and link it to your local Mahout-compiled Maven project as we
did in Chapter 1, Mahout is Not So Difficult!. In this case, since we have already created the
chapter04 Mahout project, we will simply add to it a new Java class. If you're referring to this
recipe directly, refer to the previous Getting Ready section on how to set up the project.

Implementing the Naϊve Bayes classifier in Mahout

88

So, fire up NetBeans, right-click on chapter04, and choose New Java Class. Complete the
form as shown in the following screenshot, and click on Finish.

How to do it…
Now that our class is ready to use, you could type in the same code that we used in the
previous recipe. We refer you to the book code. We only need one little change in the code;
we need to change the params.set("classifierType", "bayes"); line to the
following line:

params.set("classifierType", "cbayes");

This will change the trainer by telling it to use the cbayes weight formula to calculate
the weights.

How it works...
As we have seen, the same parameters are used from the command line. In fact, we only
recoded the same behavior of the command-line utility.

Chapter 4

89

Take a look at the Mahout source code to understand how the trainer classifier changes
between the Naïve Bayes case and the Complementary Naïve Bayes case. The purpose is only
to show that applying different classifiers to the same input is easier to code and could help in
fine-tuning the data-mining tasks.

For a more general introduction on the Complementary
Naïve Bayes classifier in Mahout, refer to the Mahout
website, https://cwiki.apache.org/confluence/
display/MAHOUT/Bayesian.

We only point out these little changes to show that you could use the existing Naïve Bayes
classifier and change it according to the way you would like.

The main difference between Naïve Bayes and Complementary Naïve Bayes is the way in
which the two algorithms calculate the weight of words. So basically, the only change from an
algorithmic perspective is that of a function. However, you could adapt the function to what
you would like to test.

5
Stock Market

Forecasting
with Mahout

The recipes we will cover in this chapter are as follows:

 f Preparing data for logistic regression

 f Predicting GOOG movements using logistic regression

 f Using adaptive logistic regression in Java code

 f Using logistic regression on large-scale datasets

 f Using Random Forests to forecast market movements

Introduction
In this chapter, we will use another type of classification algorithm to find movements in the
stock market using logistic regression and other classification algorithms.

Before beginning with the recipes, we warn the reader that these recipes will not make you
rich. We are not responsible for any use you put these recipes to or anything you use this
algorithm for. All of the recipes that we will see in this chapter are only examples meant to
enhance your knowledge. But as usual, many of the data mining processes are focused on
finding out if it is possible to understand if the market goes up or down.

Stock Market Forecasting with Mahout

92

Preparing data for logistic regression
One of the first data mining tasks that was developed late in the 90s concerned the stock
market. This is basically because of the following two facts:

 f Huge amounts of data

 f Unsupervised algorithms seem to work better for forecasting stock market movements

In this chapter, we will use classification algorithms to classify future market movements. As
for what we did in Chapter 04, Implementing the Naϊve Bayes classifier in Mahout, we use a
three-step algorithm based on Mahout.

The first step is the preparation of the dataset. Next, we move on to training a model based on
a classification algorithm and then test this model against some other data.

We will detail our intentions by first looking at a simple logistic regression analysis.

Getting ready
We chose GOOG, the stock market acronym for Google Inc, but any other stock title could
be used.

For our purposes, we will use all historical prices of the GOOG stock title available at the
Google Finance site, finance.google.com. Once we have the dataset downloaded, the
actions that we will take are as follows:

 f Removing the first column from the file to be left with just numerical data

 f Adding an extra column that will be used for our analysis

As we did in other recipes, we need to do some arrangement before having the final dataset,
which are as follows:

1. Download the original raw data from the Internet.

2. Transform it by adding some extra columns.

3. Save it in a Mahout manageable format.

As usual, let's first download the dataset and take a look at it. To get it, open up a console and
type in the following command:

wget http://ichart.finance.yahoo.com/table.csv?s=GOOG&d=10&e=29&f=2013&g=
d&a=7&b=19&c=2004&ignore=.csv

As you can see, you need to change the parameters d, e, and f to get the current
day. Otherwise, open up a browser and go to http://finance.yahoo.com/q/
hp?s=GOOG+Historical+Prices.

Chapter 5

93

The dataset is provided on the Google Finance website and is free to use. It contains daily
observations of the Google stock market index. You can take a look at the format by visiting
https://www.google.com/finance/historical?q=NASDAQ%3AGOOG.

Start your system, open up a terminal bash shell, and type in the following commands:

mkdir /tmp/logistic

export WORK=/tmp/logistic

mkdir $WORK /train

mkdir $WORK /test

mkdir $LOGISTIC_HOME/model

So, we have our folder structure ready to be used, as shown in the following screenshot:

We now need to download our training dataset. The commands to do this are as follows:

cd $WORK_DIR/train

wget --output-document=google.csvhttp://ichart.finance.yahoo.com/table.
csv?s=GOOG

You should then have a file named google.csv in the $WORD_DIR/train folder.

Stock Market Forecasting with Mahout

94

Once downloaded, we can have a look at the content of the file with a text editor. The output
should be similar to the one shown in the following screenshot:

The structure of the file is explained in the following table:

Column Description
Date The day of recorded observation in the format yyyy-mm-dd
Open The opening USD value of the stock
High The maximum USD value of the stock during the whole day
Low The minimum USD value of the stock during the whole day
Close The closing USD value of the stock
Volume The USD amount of trading transaction
Adj The closing USD adjusted value of the stock

Before proceeding, as the dates are difficult to treat with respect to the logistic regression
algorithm, we remove them using the following command:

cut -d , -f 2-7 google.csv > training.csv

Chapter 5

95

This produces a record file as shown in the following screenshot:

As a final step, we need to create an extra column that defines the action to be taken using
simply this algorithm.

How to do it…
If the closing price of the previous day is lower than that of the current day, update the last
column to SELL or to BUY.

To do this, we create a simple parse that can also be used for the next recipe:

 public static void main(String[] args) throws
FileNotFoundException, IOException {
 CSVReader reader = new CSVReader(new FileReader("$WORK_DIR/
train/train.csv"));

 String [] nextLine;
 String [] previousLine;
 String [] headernew = new String [reader.readNext().length +
1];

 CSVWriter writer = new CSVWriter(new FileWriter("$WORK_DIR/
train/final.csv"), ',');

 nextLine = reader.readNext();

 for (int i = 0; i < nextLine.length;i++)
 {

Stock Market Forecasting with Mahout

96

 headernew[i] = nextLine[i];
 }

 headernew[headernew.length-1] = "action";
 writer.writeNext(headernew);

 previousLine = reader.readNext();

 while ((nextLine = reader.readNext()) != null) {
 // nextLine[] is an array of values from the line
 System.out.println(nextLine[0] + nextLine[1] + "etc...");
 headernew = new String [nextLine.length + 1];

 for (int i = 0; i < headernew.length-1;i++)
 {
 headernew[i] = nextLine[i];
 }

 if (
 Double.parseDouble(previousLine[4]) < Double.
parseDouble(nextLine[4])
)
 {
 headernew[headernew.length] = "SELL";
 } else {
 headernew[headernew.length] = "BUY";
 }

 writer.writeNext(headernew);

 previousLine = nextLine;

 }

 reader.close();
 writer.close();

 }

Chapter 5

97

How it works…
Basically, we create a simple procedure that creates a new file called final.csv in the
$WORK_DIR/train folder. Before starting, we need to create a new header that contains
every column of the previous one and adds a last column named action. Then, for every line
of the original CSV file, we store it on an array of strings called newline that has one more
field than the original one. We also stored the previous line. We calculate the value of the last
column by using SELL if the close price of this line is greater than the previous line; otherwise,
we use BUY. Finally, we write this new line in a new CSV file.

This way of assigning the SELL/BUY operation is very common when dealing with stock
market operations, despite the simplicity of the rule.

We code it in Java so that we can reuse it, but you are also free to use any other strategy for
file parsing.

Sqoop can also be used to perform the same tasks by first creating the dataset table and then
using query statements to export the required data, as we have seen in Chapter 3, Integrating
Mahout with an External Datasource.

We are now ready to code our recipe.

Predicting GOOG movements using logistic
regression

Now, we have everything ready for our analysis. The purpose of this recipe is to try and
forecast what is the next action (BUY versus SELL) that we need to perform while giving
an input. The assumption is that the BUY action depends on a combination of the other
dependent inputs, plus some coefficients.

Getting ready
We use the whole previous recipe to create the correct input file. To ensure that everything is
working correctly, type into a console the following command in the $WORK_DIR/train folder:

hadoop-mahout@hadoop-mahout-laptop:/$ cat final.csv | more

The output should be the following:

Date,Open,High,Low,Close,Volume,Adj Close

2013-02-14,779.73,788.74,777.77,787.82,1735300,787.82, BUY

2013-02-13,780.13,785.35,779.97,782.86,1198200,782.86, SELL

2013-02-12,781.75,787.90,779.37,780.70,1859000,780.70, SELL

Stock Market Forecasting with Mahout

98

How to do it…
The recipe for training our logistic regression classifier is no more difficult than the previous
recipes. Open up a command prompt and type in the following command:

mahout trainlogistic

--input $WORK_DIR/training/final.csv

--output $WORK_DIR/model/model

--target Action

--predictors Open Close High

--types word

--features 20

--passes 100

--rate 50

--categories 2

The output is likely be similar to the following:

Chapter 5

99

By searching for the model created, you should find it in the $WORD_DIR/model folder as
shown in the following screenshot:

Now, to test the model, we can reuse the same input set (even if we have an exact
classification). We would only like to show the command needed to perform this.

The command for the testing phase is as follows:

mahout runLogistic

--input $WORK_DIR/training/enter.csv

--model $WORK_DIR/model/model

--auc

--confusion

The standard output is the following one:

hadoop-mahout@hadoop-mahout-laptop:/mnt/new/logistic$ mahout runlogistic
--input $WORK_DIR/train/enter.csv --model $WORK_DIR/model/model

Running on hadoop, using /home/hadoop-mahout/hadoop-1.0.4/bin/hadoop and
HADOOP_CONF_DIR=

MAHOUT-JOB: /home/hadoop-mahout/NetBeansProjects/trunk/examples/target/
mahout-examples-0.8-SNAPSHOT-job.jar

Stock Market Forecasting with Mahout

100

AUC = 0.87

confusion: [[864.0, 176.0], [165.0, 933.0]]

entropy: [[NaN, NaN], [-37.8, -6.8]]

13/02/18 12:32:48 INFO driver.MahoutDriver: Program took 380 ms (Minutes:
0.006333333333333333)

hadoop-mahout@hadoop-mahout-laptop:/mnt/new/logistic$

How it works…
Basically, our algorithm starting from the set of data works in the following manner:

 f Training the file using a logistic regression from the command line

 f Applying the generated model against another set of data

So, we have a number of observations that contain independent and dependent variables.
The independent variables are the ones that are simply observed and do not have any
correlation with the others. We try to forecast the outcome of one of them based on the
previous observations.

The variables range between the following types:

 f Numerical

 f Categorical

 f Textual

The numerical variables contain numerical values, the categorical variables contain a subset
of predefined choices, and the textual/word variables contain generic text.

To evaluate the probability of the dependent variable, we use the logistic function that is a
very well-known and studied function in mathematics. Let us consider the observations as a
set composed by n distinct vectors such as the following:

1,..., kx x

One of these variables is the one to be forecasted. We will try to describe the next value of the
selected variables by stating that it can be seen as a combination of the previous one:

1

1

k
j i ii

x a x−

−
=∑

The logistic regression tries to find the coefficient ia .

Chapter 5

101

To do this, we use a logistic function to fit the data, which you can see in the
following diagram:

Logistic regression is not a parallelized algorithm so it runs in a sequential mode, but it is
very efficient in terms of memory usage, so you could train it against huge datasets without
encountering too many performance issues. On the other hand, we have the possibility of an
increased CPU consumption, so the reader should be aware of this as well.

First of all let us point out that this algorithm, even with a small amount of data and being
sequential, is very fast. Even if the algorithm is a sequential one, the amount of memory used
does not grow linearly with the size of the dataset.

Basically, the algorithm tries to classify one column of a CSV based on the other columns of
the same.

To train the classifier from the command line, we use the train logistic option of the mahout
command. The main command options are shown in the following table:

Command Meaning
--input Tells the training algorithm to find the original CSV
--output Declares the target folder to place the model in once created
--target Specifies the target column of the CSV file that will be classified
--categories Specifies how many different values of the target variable we could have
--predictors Specifies the names of the columns on the CSV input to be used for the

evaluation of the target variable
--types Declares the type of the predictor variables
--passes Declares the number of times the algorithm should reuse the input

dataset
--rate Sets the initial learning rate
--features Sets the size of the internal vector to be used

Stock Market Forecasting with Mahout

102

So, using our recipe, we trained the logistic regression against our CSV using the
following parameters:

 f $WORK_DIR/train/google.csv as input

 f $WORK_DIR/model/ as the output model

 f Action as the target variable

 f The type of the action variable is a word

 f The predictors columns are the Open, Close, and High columns, each being of
the numeric type

The outcome is a binary file containing the model. Obviously, when using the logistic
algorithm, great attention should be given to choosing the right predictors for the target
variable. In our case, as the target variable has been created based on the closing price, it is
highly correlated. But from datasets, where the target variable is not so well defined, many
tries should be used to identify the best predictors for a target variable. The target variable
(in our case, a word variable) consists only of two possible outcomes (BUY or SELL).

The numbers that are output are from the logistic function with values between 0 and 1 that
tell us mathematically how the various dependent variables are combined to fit the target
variable. So, in our case, we used Open Close High as the predictor for Action.

To evaluate our train model, we used the same training set and, as the output, we got
the following:

AUC = 0.87

confusion: [[864.0, 176.0], [165.0, 933.0]]

The first parameter is the acronym for Area Under the Curve. As the area under the logistic
can be expressed as a probability, this parameter is the probability of the model that classifies
the data correctly. The AUC parameter tells us the number of true positives, so the higher the
value between 0 and 1, the fewer false positives we have.

So the values could range from 0, which is a wrong model, to 1, which is a perfect model. In
our case, 0.87 told us that the model's probability fails in the classification of the remaining
13 percent of the cases. This value is higher but not high enough for a good model.

Besides, we have the confusion matrix that tells that the model performs well in 864 out of
1040 test cases (864 + 176).

The confusion matrix
As with every classifier training or testing, the more you try, the more you could improve your
results. In our case, we could also add the minimum stock market USD price to see if the
model could perform better.

Chapter 5

103

We give it a second run with the following terminal command:

mahout trainlogistic

--input $WORK_DIR/training/enter.csv

--output $WORK_DIR/model/model

--target Action

--predictors Open Close High

--types word

--features 20i

--passes 100

--rate 50

--categories 2

Followed by the subsequent command:

mahout runLogistic

--input $WORK_DIR/training/enter.csv

--model $WORK_DIR/model/model

--auc

--confusion

The output of the confusion matrix will be as follows:

AUC = 0.87

confusion: [[866.0, 172.0], [163.0, 937.0]]

In this case, we get better performance even if it is not as good as expected. But in the case of
millions of records, this little improvement could be a valuable one.

Using adaptive logistic regression in Java
code

So far, we have seen that Mahout's logistic regression algorithm does not use the Hadoop
MapReduce computational power, so it is easy to embed it into a portion of the Java code. Let
us now recode the previous example using NetBeans and Maven.

In this recipe, we will use a more sophisticated version of the logistic regression
algorithm—the adaptive logistic regression algorithm—that chooses the best outcome
of the logistic algorithm to decide about classification.

Stock Market Forecasting with Mahout

104

Getting ready
To get ready, simply open up a terminal window and type in the following command:

mvn archetype:create -DarchetypeGroupId=org.apache.maven.archetypes
-DgroupId=com.packtpub.mahoutcookbook -DartifactId=chapter05

Then, open up your project with NetBeans and add the reference to the Mahout Maven local
project as we did in the previous chapters.

Now that everything is ready, let's code!

How to do it…
The code to simulate the training phase is as follows:

 String inputFile = "/mnt/new/logistic/train/google.csv";
 String outputFile = "/mnt/new/logistic/model/modelfromcode";

 AdaptiveLogisticModelParameters lmp = new
AdaptiveLogisticModelParameters();
 int passes = 50;
 boolean showperf;
 int skipperfnum = 99;
 AdaptiveLogisticRegression model;

 CsvRecordFactory csv = lmp.getCsvRecordFactory();
 model = lmp.createAdaptiveLogisticRegression();
 State<Wrapper, CrossFoldLearner> best;
 CrossFoldLearner learner = null;

 for (int pass = 0; pass < passes; pass++) {
 BufferedReader in = open(inputFile);

 // read variable names
 csv.firstLine(in.readLine());

 String line = in.readLine();
 int lineCount = 2;
 while (line != null) {
 // for each new line, get target and predictors
 Vector input = new RandomAccessSparseVector(lmp.
getNumFeatures());
 int targetValue = csv.processLine(line, input);

Chapter 5

105

 // update model
 model.train(targetValue, input);
 k++;

 line = in.readLine();
 lineCount++;
 }
 in.close();
 }

 best = model.getBest();
 if (best != null) {
 learner = best.getPayload().getLearner();
 }

 OutputStream modelOutput = new
FileOutputStream(outputFile);
 try {
 lmp.saveTo(modelOutput);
 } finally {
 modelOutput.close();
 }

The output should be less descriptive than the command line. What we did was basically only
rewrite the command-line parameter used in the previous recipe in the Java code. This code
is the Java translation of the code used by the command-line utility when calling the Mahout
trainlogistic analysis.

We will briefly comment on the code so that it can be reused as needed.

How it works…
The most important part to focus on is the train method called from the
AdaptativeLogistic object:

model.train(targetValue, input);

The training phase is inserted inside a for loop because of the passing rate that is
defined previously.

Every loop consists of the following actions:

 f Opening and reading, line by line, the content of the CVS input file defined previously

 f Creating a vector containing the target and predictors for each line

 f Training every vector

Stock Market Forecasting with Mahout

106

At the end (outside the loop), we will have found the best model resulting from the training
phase. After this, the model is saved into a file.

The code to choose the best logistic regression model is pretty easy. It is as follows:

 best = model.getBest();
 if (best != null) {
 learner = best.getPayload().getLearner();
 }

Here, learner is an object of type CrossFoldLearner. After this, we store the file with
an outputstream object. As the final step, we save our learner object to a file using the
following command:

 OutputStream modelOutput = new
FileOutputStream(outputFile);
 try {
 lmp.saveTo(modelOutput);
 } finally {
 modelOutput.close();
 }

In this case, we did not give any further information on the model created.

Using logistic regression on large-scale
datasets

Thus far, we have seen how logistic regression works in a sequential mode. In this recipe, we
will see how to make the logistic regression algorithm work using the Hadoop MapReduce
implementation. Because the official Mahout implementation does not support the Hadoop
implementation of the logistic regression algorithm at the moment, we will move to the GitHub
site where the code implements this feature.

Getting ready
To get ready, we need to download the code and the example dataset from GitHub. Perform
the following steps to do so:

1. Go to https://github.com/WinVector/Logistic/tree/master.

2. Open up a terminal and create a working environment by typing in the following
commands:
export WORK_DIR=/mnt/hadoop-logistic

mkdir $WORK_DIR

cd $WORK_DIR

Chapter 5

107

3. Let us download a JAR file with the full source code, compiled and ready to be run
from the command line using the wget command:
wget github-windows://openRepo/https://github.com/WinVector/Logist
ic?branch=master&filepath=WinVectorLogistic.Hadoop0.20.2.jar

4. Finally, we'll download two small datasets for our testing purposes:
wget http://www.win-vector.com/dfiles/WinVectorLogisticRegression/
uciCarTrain.tsv

wget http://www.win-vector.com/dfiles/WinVectorLogisticRegression/
uciCarTest.tsv

5. We'll see the following structure inside our $WORK_DIR folder:

We download two datasets: one for the training phase and the other for the testing phase. For
a full description of the dataset, refer to the UCI machine learning site, http://archive.
ics.uci.edu/ml/machine-learning-databases/car/.

Recall that we are going to use the whole set of columns of the tab-delimited files to forecast
the rate of a car.

How to do it…
Now, we need to simply link the correct JAR files and run the software with the
correct parameters.

Stock Market Forecasting with Mahout

108

So open up a terminal window and type in the following command:

hadoop jar WinVectorLogistic.Hadoop0.20.2.jar logistictrain uciCarTrain.
tsv "rating ~ buying + maintenance + doors + persons + lug_boot"

The result of the computation will be displayed as follows:

The results should be in a file with the .ser extension in the same folder we have all the files,
as shown in the following screenshot:

Chapter 5

109

Now, we need to run our model over the testing set of values. The command is pretty easy;
just type the following command in the same command window:

hadoop jar WinVectorLogistic.Hadoop0.20.2.jar logisticscore model.ser
uciCarTest.tsv scoredDir

The result on the console will be as follows:

At the filesystem level, we see that the results are stored in a sequence file in the
scoreDir folder:

Stock Market Forecasting with Mahout

110

Using the following command, one can see the final result of our computation:

hadoop dfs -text scoreDir/part-r-00000

The final result is as follows:

File.Offset predict.rating predict.rating.score buying
maintenance doors persons lug_ boot safety rating

0 0.9999999999999392 6.091299561082107E-14 vhigh vhigh 2
2 small low FALSE

1 0.9999999824028766 1.759712345446162E-8 vhigh vhigh 2
2 small high TRUE

How it works...
As we have seen, we have a two-step procedure that, in this case, performs the
following actions:

1. Creates a model file with the .ser extension.

2. Creates the final rating file using the Hadoop sequence file format.

In the first case, this implementation uses the hadoop jar command to execute the
logistictrain class inside the WinVectorLogistic.Hadoop0.20.2.jar file for the
logistic phase. The other mandatory parameters are as follows:

 f uciCarTrain.tsv (the source file)
 f rating ~ buying + maintenance + doors + persons + lug_boot +

safety (the way we train the logistic)

 f model.ser (the file model name)

Chapter 5

111

So basically, we try to identify the rating based on the assumption that the rating depends on
the columns buying, maintenance, doors, person, lug_boot, and safety:

The whole set of columns is buying, maintenance, doors, persons, lug_boot, safety,
and rating. If we take a look at the source code in the GitHub repository, we can see that
the logistictrain class is written in a way that respects the Hadoop specification for
implementing the MapReduce job (see https://github.com/WinVector/Logistic/
blob/master/src/com/winvector/logistic/LogisticTrain.java).

The MapReduce job is performed by readying a portion of the same data file, transforming
them into sequence files and then evaluating every portion of data to obtain a set of scores
that are evaluated to find the best one. Next, the reducer aggregates all of the data into the
model.ser file.

We point out that this implementation has been done to allow scaling to Hadoop, so the job
that is running can be changed to define the mapper and the reducers.

See also
The whole implementation has been coded by John Mount, who also maintains a blog about
data mining and the implementation of the logistic regression using Hadoop. We strongly
suggest that you follow his blog, which is available at http://www.win-vector.com/blog/.

Stock Market Forecasting with Mahout

112

Using Random Forest to forecast market
movements

This recipe will act on the same dataset we have used so far. The difference is that we are
going to use a different type of algorithm called Random Forest.

This kind of algorithm is very efficient in classifying forecasts on a huge set of predictors. We will
use it to forecast Google's market movement, but a potentially better algorithm is the one that
forecasts the movement of the NASDAQ based on all of the stock market titles that compose
the NASDAQ basket. So, if for every tile we have five attributes (Open, Close, High, Low, and
Volume), we could have hundreds of numerical predictors to forecast only a single moment.

This recipe has been built out of the information provided by Jennifer Smith on GitHub.

Getting ready
To get started with this example, create a new Maven project with the following command:

mvn archetype:create -DarchetypeGroupId=org.apache.maven.archetypes
-DgroupId=com.packtpub.mahoutcookbook -DartifactId=chapter05b

We need to add the references to your local Mahout Maven project as well.

How to do it…
The basic steps for this algorithm are as follows:

1. Read a CSV value file to convert it into an array of strings.

2. Divide the resulting array into the training and testing data using a 90 percent
approach, meaning that the training set is 90 percent of the whole dataset.

3. Run the runIteration method with a defined number of trees to create a
descriptor object.

To run this example, we need to add the following code into the main method of the App.
java class automatically generated by Maven:

String trainingSetFile = "/mnt/new/logistic/train/google.csv";

int numberOfTrees = 100;
boolean useThresholding = true;

System.out.println("Building " + numberOfTrees + " trees.");
String[] trainDataValues = fileAsStringArray(trainingSetFile, 42000,
useThresholding);

Chapter 5

113

String[] testDataValues = new String[]{};

String descriptor = buildDescriptor(trainDataValues[0].split(",").
length - 1);

// take 90 percent to be the test data
String[] part1 = new String[trainDataValues.length / 10 * 9];
String[] part2 = new String[trainDataValues.length / 10];

System.arraycopy(trainDataValues, 0, part1, 0, part1.length);
System.arraycopy(trainDataValues, part1.length, part2, 0, part2.
length);

trainDataValues = part1;
testDataValues = part2;

long startTime = System.currentTimeMillis();
runIteration(numberOfTrees, trainDataValues, testDataValues,
descriptor);
long endTime = System.currentTimeMillis();
double duration = new BigDecimal(endTime - startTime).divide(new
BigDecimal("1000")).doubleValue();
System.out.println(numberOfTrees + " took " + duration + " seconds");

How it works…
The main method to focus on is runIteration where the whole calculation takes place. The
code is as follows:

System.out.println("numberOfTrees = " + numberOfTrees);
Data data = loadData(trainDataValues, descriptor);
Random rng = RandomUtils.getRandom();

DecisionForest forest = buildForest(numberOfTrees, data);
saveTree(numberOfTrees, forest);

Data test = DataLoader.loadData(data.getDataset(), testDataValues);

try {
 FileWriter fileWriter = new FileWriter("attempts/out-" + System.
currentTimeMillis() + ".txt");
 PrintWriter out = new PrintWriter(fileWriter);

 int numberCorrect = 0;
 int numberOfValues = 0;

Stock Market Forecasting with Mahout

114

 for (int i = 0; i < test.size(); i++) {
 Instance oneSample = test.get(i);
 double actualIndex = oneSample.get(0);
 int actualLabel = data.getDataset().valueOf(0, String.
valueOf((int) actualIndex));

 double classify = forest.classify(test.getDataset(), rng,
oneSample);
 int label = data.getDataset().valueOf(0, String.valueOf((int)
classify));

 System.out.println("label = " + label + " actual = " +
actualLabel);
 if (label == actualLabel) {
 numberCorrect++;
 }
 numberOfValues++;
 out.println(label + ", " + actualLabel);
 }
 double percentageCorrect = numberCorrect * 100.0 / numberOfValues;
 System.out.println("Number of trees: " + numberOfTrees + " ->
Number correct: " + numberCorrect + " of " + numberOfValues + " (" +
percentageCorrect + ")");

 out.close();
} catch (Exception e) {
 e.printStackTrace();
 System.err.println("Error: " + e.getMessage());
}

As you can see, the calculation part is done by the DecisionForest object that uses the
number of trees defined in the parameters used to call the function and the data object
containing the Data vectors as result of the input CSV file parsing. After building the forest
object, we have the possibility to use it to invoke the classify method to perform the
classification tasks.

See also
Random Forests are great tools for classifying variables based on hundreds of predictors.
They are very useful when dealing with a lot of independent variables.

We refer you to the paper Forecasting Stock Index Movement: A Comparison of Support Vector
Machines and Random Forest, freely available at http://papers.ssrn.com/sol3/
papers.cfm?abstract_id=876544, for some possible applications of this to stock
market forecasting.

6
Canopy Clustering

in Mahout

The recipes we will look over in this chapter are as follows:

 f Command-line-based Canopy clustering

 f Command-line-based Canopy clustering with parameters

 f Using Canopy clustering from the Java code

 f Coding your own clustering distance evaluation

Introduction
Canopy clustering is a fast and powerful algorithm that can be used to cluster the groups'
sparse information grouped in some n-dimensional arrays. This chapter is dedicated to
various recipes for using such clustering techniques.

Canopy Clustering in Mahout

116

Command-line-based Canopy clustering
Basically speaking, the problem of clustering can be seen as the best way to group
information together. So, the classification problems are a major field of application of
clustering techniques. When we deal with classification tasks, we mean in most of the
cases with multidimensional observation. Let us imagine this simple scenario: You have
the navigation log of a very large website. For every connection, you could have lots of
information as follows:

 f IP address

 f Browser used

 f Number of times a page has been displayed

 f Number of links on the page

Obviously, this log file could contain billions of lines and hundreds of different observations.
When we classify this information, we do not look for a single instance of the information to
be classified, but for the classification of many of them together.

So, for example, we could ask ourselves what are the first five countries, by rank, that surf our
website coupled with the browser to extract the first five couples (country and browser).

As the Mahout framework deals with a very big dataset, obviously, the first coded algorithms
were the clustering ones. The clustering algorithms implemented in Mahout up to Version
0.8 are:

 f Canopy clustering

 f K-means clustering

 f Hierarchical clustering

And for the other clustering algorithms, we refer you, as usual, to the official Mahout page
(https://cwiki.apache.org/confluence/display/MAHOUT/Algorithms).

The difference between the types of algorithms used depends on the way the clusters
are built, so the way you decide two different multidimensional vectors are similar. In this
chapter, we will show you the Canopy clustering algorithm to introduce you to the argument.
The Canopy clustering algorithm bases its name on the fact that during the algorithm some
canopies are generated. We will go into more detail about the whole process, but the core
idea of this algorithm is to build some grouping sets during the computational phase, and
then evaluate them.

The simplest way to use the Canopy clustering algorithm is by using the command-line option
available to us. Canopy clustering can be used both as a sequential and a parallelized algorithm.

Chapter 6

117

Getting ready
As with the recipes in the previous chapters, we need to create our environment and add
some test data to be used. Start your system, open up a terminal bash shell, and type in the
following commands:

mkdir /tmp/canopy

export WORK_DIR=/tmp/canopy

Now, we will use the dataset whose description can be found at the following link: http://
archive.ics.uci.edu/ml/datasets/Synthetic+Control+Chart+Time+Series.

The dataset is composed of 600 rows and 60 columns, where every row represents a time-
series observation. By plotting the first three rows, we have the following chart that will
represent the artificially generated time series:

In order to download it, we type in the following command:

cd $WORK_DIR

wget http://archive.ics.uci.edu/ml/databases/synthetic_control/synthetic_
control.data

Canopy Clustering in Mahout

118

Once downloaded, the content of the file should look like the following screenshot:

The Canopy cluster functionality works with the sequence vector file, which needs to be
generated starting from the file we downloaded.

How to do it…
The Canopy clustering implementation coded with Mahout is composed of several different
steps. The principal ones are the following:

1. Convert the source data into vector sequential files containing a value composed of a
vector of numbers for every key.

2. For every set of this n-dimensional numeric data point, a mapper creates Canopy
centers, which are centers of aggregation for the input point set.

3. The reducer groups together the created Canopy centers to create the final centers.

4. The initial data points are grouped together on the aggregated clusters.

In order to realize our analysis, we need to carry out some actions, in particular:

1. Create an HDFS test folder.

2. Put the file containing our dataset into it.

3. Transform the original dataset in the sequence file using the Mahout Canopy cluster
command-line utility.

Chapter 6

119

Considering that the Canopy works with the HDFS filesystem and the basic Canopy cluster
uses a predefined working folder, we need to type the following commands in the terminal:

cd $WORK_DIR

hadoop fs -mkdir testdata

The hadoop fs –ls command gives the following output:

drwxr-xr-x - hadoop-mahout hadoop-mahout 4096 2013-03-14 14:23 /
mnt/new/canopy/testdata

-rw-r--r-- 1 hadoop-mahout hadoop-mahout 288374 1999-06-14 22:41 /
mnt/new/canopy/synthetic_control.data

Then, we need to move the file out into the created folder with the HDFS filesystem, to store
the synthetic_control.data file in the testdata HDFS folder:

hadoop fs -put ${WORK_DIR}/synthetic_control.data testdata

To launch a Canopy cluster analysis on the test data, you simply need to type in the following
command:

mahout org.apache.mahout.clustering.syntheticcontrol.canopy.Job

After a while, the output should be the following:

Canopy Clustering in Mahout

120

The displayed numbers are the result of our computation, representing the series that
Mahout considers clusters. So, our analysis created six clusters that were displayed in the
standard output.

It is also possible to call some other parameter, but this will be covered in the next recipes.
Let us see at a high level how it works.

How it works...
In this recipe, we have used a default Java class file provided with the Mahout code that
carries out the Canopy clustering on the synthetic control data.

The key concept for creating the cluster is to first have a rough division algorithm, by taking a
set of the n-dimensional vectors, and divide them using a first distance. Then, on the second
stage, use a more accurate distance to find which cluster the points should appertain to. The
original algorithm was first coded without using a MapReduce framework. The only difference
between the sequential and MapReduce implementation is the fact that we have different
parallel processes that create the cluster, and then in the final stage, the data is aggregated
to produce the final results.

In this case, everything is done using a simple Java class coded inside the Mahout
distribution. The whole class does the full job as described previously, and it can be used
for performing the Canopy clustering analysis. In this, we do not need to provide anything
considering that the first entry in the Job class contains the following code:

if (args.length > 0) {
 log.info("Running with only user-supplied arguments");
 ToolRunner.run(new Configuration(), new Job(), args);
} else {
 log.info("Running with default arguments");
 Path output = new Path("output");
 HadoopUtil.delete(new Configuration(), output);
 run(new Path("testdata"), output, new
 EuclideanDistanceMeasure(), 80, 55);
}

So, automatically, in case we do not provide any arguments, the ETL of the
synthetic_control.data file transforms into a sequencefile.

If we take the analysis to a deeper level, we focus on the following line, which contains the
basic parameter to run a generic Canopy cluster analysis:

run(new Path("testdata"), output, new EuclideanDistanceMeasure(),
 80, 55);

Chapter 6

121

As we stated before, the Canopy clustering is done using a distance measure between the
different points that are n-dimensional vectors. A first rough, but very fast, estimation is done
using the number 80 as a threshold value, and a second one using the same distance but
with a threshold value of 55. The two thresholds are meant to be the limit. So, if we have two
multidimensional arrays, we use T1 as the limit to consider the two arrays as part of the first
generated cluster. T2 has the same meaning but in the second generated cluster.

The measure to evaluate how near a point is to a cluster is, in this case, the
EuclideanDistance. Only for the sake of clarity, considering two n-valued vectors
x = (x_1,..x_n) and y = (y_1,...,y_n), the Euclidean distance is calculated using the
following formula:

But, as usual, other possible ways of calculating the distance between two n-dimensional
arrays can be used or created. We will see in the next recipes how to create your own
measure distance.

Command-line-based Canopy clustering
with parameters

In the previous recipe, we used the code directly to execute a predefined Canopy clustering
on a predefined dataset. In this chapter we will do the same thing, but in this case, we will
use some command-line parameters so as to allow you to understand better how to prepare a
Canopy clustering analysis.

Getting ready
In this case, a predefined ETL transform needs to be done first because the input for Canopy
clustering is a sequence file that has a key/value pair as follows:

 f Key: A unique identifier, for example, an automatic generated auto-incremental counter

 f Value: An n-sized vector of numeric value

So, before continuing, we need to transform our dataset into a sequence vector file, where
every line becomes a 600-coordinate sparse vector.

Canopy Clustering in Mahout

122

Moving ahead from the recipes of Chapter 2, Using Sequence Files – When and Why?,
we code the following transformation class, which is present in the book's source code at
www.packtpub.com/support:

/**
 *
 * @author hadoop-mahout
 */
public class CreateVectorsFile {
 public static void main(String[] args) throws IOException
 {
 Configuration conf = new Configuration();
 FileSystem fs = FileSystem.get(conf);

 String input = "/mnt/new/canopy/original/synthetic_control.
data";
 String output = "/mnt/new/canopy/sequencefile/synthetic_
control.seq";

 BufferedReader reader = new BufferedReader(new
FileReader(input));
 SequenceFile.Writer writer = new SequenceFile.Writer(fs,
conf,new Path(output), LongWritable.class, VectorWritable.class);

 String line;
 long counter = 0;
 while ((line = reader.readLine()) != null) {

 String[] c;
 c = line.split(" ");
 double[] d = new double[c.length];
 for (int i = 0; i < 61; i++) {

 try
 {
 d[i] = Double.parseDouble(c[i]);
 }catch(Exception ex)
 {
 d[i] = 0;
 }

 }

 Vector vec = new RandomAccessSparseVector(c.length);

Chapter 6

123

 vec.assign(d);

 VectorWritable writable = new VectorWritable();
 writable.set(vec);
 writer.append(new LongWritable(counter++), writable);
 }
 writer.close();

}

As you can see, we only read the original file line by line and create SparseVector, where
each entry is the value grabbed from the file. Considering that a vector file is a sequence file,
the key is the line number (that is unique), and the value is the vector containing the values.
We also add a try-catch block to avoid any incorrect input on the vector. We warn you that, in
this case, we considered the following hypothesis.

Considering that not all the lines have the same amount of entries—some have 66 and
some 60—we cut off all the length of the vector to 60. A more sophisticated approach would
have been to force the length of the vectors to 66 (in this file, this is the maximum value),
and manage the vectors that are not of the same length. There is a considerable amount of
reference material available online on how to evaluate the missing entry point. In case you
would like to try this second option, you could go on and choose a randomly generated value
between the minimum/maximum values of all the vectors. It is not difficult to code something
like this in Java. But this is out of the scope of the book.

Remember that for the Canopy cluster analysis, having differently-sized vectors can
compromise the running of the algorithm. This practically means that if, for example, in the
synthetic control file you have a line with a different number of points (not 60), and this could
create problems.

As usual the synthetic_control.data file does not need to be significantly re-managed,
but in case your input file contains lines with text characters, you'd need to assign a numeric
value to each text value. How to do this is out of the scope of this recipe. You could try your
hand at working with different datasets. On completion of our running code, we have the
synthetic_control.seq file created in the $WORK_DIR/sequencefile location.

Now, we can do our Canopy cluster analysis.

How to do it…
To create our analysis, we need to do the following:

1. Call the Mahout Canopy command line.

2. Use the clusterdump command-line option to display the clusters.

Canopy Clustering in Mahout

124

The process is described in detail as follows:

1. Now that we have everything ready, we can simply call Mahout with the Canopy
option. Execute the following line in the terminal/command prompt:
mahout canopy -i $WORK_DIR/sequencefile/synthetic_control.seq -o
$WORK_DIR/output/canopy.output -t1 80 -t2 55

2. The final lines of the output should be as follows:

3. The output of the Canopy cluster analysis is a file model that is present in the output
folder. To see the content, use the seqdumper utility by typing the following command:
mahout clusterdump -i $WORK_DIR/output/canopy.output/clusters-0-
final/ -o $WORK_DIR/output/clusteranalyze.txt

4. You should get the clusteranalyze file, whose first line should look like the
following one:
C-0{n=116 c=[0:28.781, 1:34.463, 2:31.338, 3:31.283, 4:28.921,
5:33.760, 6:25.397, 7:27.785, 8:35.248, 9:27.116, 10:32.872,
11:29.217, 12:36.025, 13:32.337, 15:34.525, 16:32.872, 17:34.117,
18:26.524, 19:27.662, 20:26.369 60:34.932] r=[3.463]}

How it works...
The previous output can be interpreted as follows:

 f C-0 is name of the cluster

 f N= 116 is the number of the points aggregated into the cluster

Chapter 6

125

 f C=[..] are the 166 points related to the cluster and the first one refers to the center
of the cluster

 f r is the radius of the cluster, that is, the maximal Euclidean distance between the
farthest point and the center of the cluster

As we stated before, not only the Canopy but the cluster analysis is based on the idea that all
the vectors can be thought of as a point, and so a cluster is a sphere that contains a subset of
points grouped into a cluster.

The Canopy command comes with a set of options; the most important of which are
as follows:

 f -i: Input vector's directory

 f -o: Output working directory

 f -dm: Distance measure

 f -t1: T1 threshold

 f -t2: T2 threshold

 f -ow: Overwrite output directory if present

By default, –dm is the Java class name that needs to be used for evaluating the
distance. If no class is specified, org.apache.mahout.common.distance.
SquaredEuclideanDistanceMeasure is used.

This is the standard Euclidean distance in an n-dimensional space. This Java class object
implements the DistanceMeasure interface. Mahout comes with other implementations
that can be used; for example, CosineDistanceMeasure. So, in this case, using the
command line of the recipe, one can call the following command:

mahout canopy -i $WORK_DIR/sequencefile/synthetic_control.seq -o $WORK_
DIR/output/canopy.output -t1 80 -t2 55 -ow -dm org.apache.mahout.common.
distance.CosineDistanceMeasure

The –ow option tells you every time to overwrite the resulting model.

Probably, two of the most important parameters for the Canopy analysis are t1 and t2. These
give the threshold value for the distance, to discriminate in the first and second step of the
algorithm. These parameters are mandatory and so need to be provided. We need to point out
that these thresholds do not depend on the dimension of the data, provided on the metrics
involved to evaluate the cluster. However, the better they are tuned, the better the output will
be. Unfortunately, when mining huge datasets, it is difficult to repeat the canopy algorithm
many times to fine-tune the best threshold values, we will give you some suggestions for
choosing the possible corrected values.

Canopy Clustering in Mahout

126

If it is possible, a first very rough estimation can be to set the two parameters equally. The
t2 parameter sets the number of the final cluster, so the smaller values of t2 yield larger
numbers of cluster and vice versa.

We invite you to try different values on the same dataset to evaluate the final number of
clusters generated.

Using Canopy clustering from the Java code
The Mahout command-line option is nothing more than a low-level interface to the Java
classes used, so it is not difficult to embed them into a Java code.

Getting ready
We need to set up the Maven project as usual, so fire up NetBeans, and create a new Maven
project from the archetype using the following settings:

Chapter 6

127

Then, choose the project name, as shown in the following screenshot:

Finally, add the dependency to our local Mahout Maven project, as we did in the
previous recipes.

How to do it…
Now, we are ready to code the example of the previous recipe in the Java language.

1. The code is pretty easy and only needs to be added to the main method of the
App.java file created automatically by NetBeans. The code is as follows:
import org.apache.mahout.clustering.canopy.CanopyDriver;
import org.apache.hadoop.fs.Path;
import org.apache.mahout.common.distance.EuclideanDistanceMeasure;

public class App
{
 public static void main(String[] args) throws Exception
 {
 //setting all parameters
 String inputFileName = new String("/mnt/new/canopy/
sequencefile/synthetic_control.seq");
 String outputFileName = new String("/mnt/new/canopy/
output/output.model");

Canopy Clustering in Mahout

128

 Path inputPath = new Path(inputFileName);
 Path outputPath = new Path(outputFileName);
 EuclideanDistanceMeasure measure = new
EuclideanDistanceMeasure();

 double t1;
 double t2;
 double clusterClassificationThreshold;

 t1 = 50;
 t2 = 80;
 clusterClassificationThreshold = 3;
 boolean runSequential = true;

 CanopyDriver.run(inputPath , outputPath,measure,t1,t2,runS
equential,clusterClassificationThreshold,runSequential);

 }
}

2. On running this program, the result will be as follows:

Chapter 6

129

How it works...
Basically, all the clustering algorithms work the same way. The main invocation is done by the
following line:

CanopyDriver.run(inputPath ,
 outputPath,measure,t1,t2,runSequential,clusterClassificationThresh
 old,runSequential);

In this case, we use the Canopy implementation of the interface cluster that always has a run
method. The implementation in this case is done using the following parameters:

 f inputPath

 f outputPath

 f measure

 f t1

 f t2

 f runSequential

 f clusterClassificationThreshold

They are the same parameters used from the command-line utility except for runSequential,
which is a flag for forcing to use sequential or parallelized implementation of an algorithm.

You should have noticed, however, that both the input and the output paths are passed using
the Hadoop path object; this implies that you cannot use the algorithm by directly using the
normal filesystem. So, beware when using the Canopy analysis in a production environment.

Apart from the t1 and t2 values for the two-stage threshold, we point out that you need to
pass a measure for evaluating the distance between the n-dimensional vector points.

In our case, we explicitly declare to use the standard Euclidean distance. But, as for the
command line, it is possible to use other types of distances.

Mahout, by default, comes with the following distance' measures to evaluate the clusters
ready to be used; we'll cover these in the next section.

Canopy Clustering in Mahout

130

Coding your own cluster distance evaluation
In this recipe we will implement our own DistanceClass for the Canopy algorithm, as we
stated, apart from the threshold values.

Getting ready
We only need to add a new class to our Maven project. To do this, simply right-click on the
project icon, choose New Java Class, and complete the form as follows:

Then, click on Finish.

How to do it…
1. We only need to implement the DistanceMeasure interface contained in the org.

apache.mahout.common.distance package. The code to do this is as follows:
import java.util.Collection;
import java.util.Collections;

import org.apache.hadoop.conf.Configuration;
import org.apache.mahout.common.distance.DistanceMeasure;
import org.apache.mahout.common.parameters.Parameter;
import org.apache.mahout.math.Vector;

public class myDistance implements DistanceMeasure {

Chapter 6

131

 @Override
 public void configure(Configuration job) {
 // nothing to do
 }

 @Override
 public Collection<Parameter<?>> getParameters() {
 return Collections.emptyList();
 }

 @Override
 public void createParameters(String prefix, Configuration
jobConf) {
 // nothing to do
 }

 @Override
 public double distance(Vector v1, Vector v2) {
 return 3;
 }

 @Override
 public double distance(double centroidLengthSquare, Vector
centroid, Vector v) {
 return centroidLengthSquare - 3 * v.dot(centroid) +
v.getLengthSquared();
 }
}

2. Now, you can change the previous recipe's App.java file by replacing the following line:

EuclideanDistanceMeasure measure = new
 EuclideanDistanceMeasure();

Replace the preceding line with the following:
myDistance measure = new myDistance();

How it works...
As we stated in the previous section, we have implemented the DistanceMeasure interface.
The methods to focus on are:

 f distance(Vector v1, Vector v2)

 f distance(double centroidLengthSquare, Vector centroid,
Vector v)

Canopy Clustering in Mahout

132

In our case, we create a very simple implementation by always returning the number three
in one case, and in the other by returning three times the square distance instead of the
square distance.

This is only an example, but we challenge the willing reader to take a look at the
implementation done with the classic Euclidean distance to understand how Mahout
implements this mathematical concept.

See also
 f Chapter 5, Stock Market Forecasting with Mahout

7
Spectral Clustering

in Mahout

This chapter is devoted to illustrating the spectral clustering technique for a big dataset. The
recipes that we will cover in this chapter are as follows:

 f Using EigenCuts from the command line

 f Using basic EigenCuts from Java code

 f Creating a similarity matrix from raw data

 f Using spectral clustering with image segmentation

Introduction
This chapter is continuation of Chapter 6, Canopy Clustering in Mahout. The argument still
remains related to the same clustering techniques. We are interested in showing you some
other ways we can build clusters from billions of pieces of information and many different
observed behavioral patterns. We will consider in this recipe the spectral clustering algorithm.
In this algorithm, we will use the spectral division of a graph to show how to build clusters. The
spectral clustering technique has been demonstrated to be very powerful in terms of ease in
which to implement and for the concepts involved.

Using EigenCuts from the command line
In graph theory, it is possible to associate a similarity matrix with every graph; that is, a set of
nodes called vertices connected by links called edges.

Spectral Clustering in Mahout

134

Just to give an example, one could consider the following graph:

Consisting of vertices from 1 to 6 and 8 edges, one can easily associate this graph with the
following matrix called the adjacency matrix:

1 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0

Here the entry for the row i, representing the node i and the column/node j, is 1 if the two
nodes are connected or otherwise it is 0.

Note that node 1 is self-connected, so its value is 1 while the other nodes are not
self-connected, so their values are 0.

Clustering analyses are particularly useful for analysis graphs, which are the natural
representation for social networks and user connection. Mahout has a series of clustering
algorithms to perform dimension reduction. Spectral clustering can be used with or without
Mahout. In this recipe, we will illustrate how to use the EigenCuts algorithm from the
command line.

Getting ready
Considering the fact that spectral clustering works with matrices, we need to create one from
scratch. We also need to transform this matrix into a CSV file which is suitable to be read by
the command-line input. So before proceeding, let us set up our working environment.

Chapter 7

135

To do this, let us first create the input and output folders. So open up a command-line
terminal and type in the following command:

export WORK_DIR=/mnt/spectral

mkdir $WOKR_DIR/input

mkdir $WOKR_DIR/output

This will create the folder with the usual structure that we used in the previous recipes. Now
we need to create a similarity matrix to place in the $WORK_DIR/input folder that will be
analyzed by the Mahout EigenCuts algorithm. We will code the example in Java to help you in
case of future integrations.

In the terminal console, we will type in the following Maven command:

mvn archetype:create -DarchetypeGroupId=org.apache.maven.archetypes
-DgroupId=com.packtpub.mahoutcookbook -DartifactId=chapter07

This will create the usual Maven folder project.

Now fire up NetBeans and add a new class into the newly created chapter folder. This can be
done by using the following action command:

Right-click on the project icon and choose New Java class and enter the data as shown in the
following screenshot:

Once we have created the new class, CreateSimilarityMatrix, let us move to the code.

Spectral Clustering in Mahout

136

The code for the class is pretty easy. The need is basically to create a CSV file that will be used
as input. The actions required are as follows:

 f Populate a square matrix with random numbers ranging from 0 to 1

 f Save the matrix into a CSV file

The code can be seen as follows:

double[][] smatrix = new double[1000][1000];
String filePath = new String("/mnt/spectral/input/matrix.csv");
//populating the matrix by rows and columns
for (int i=0; i < 1000; i++)
{
 for (int j=0; j < 1000; j++)
 {
 smatrix[i][j] = Math.random();
 }

}
//saving as a csv
FileWriter fw = new FileWriter(filePath);

for (int i=0; i < 1000; i++)
{
 for (int j=0; j < 1000; j++)
 {

 fw.write(Integer.toString(i) + "," + Integer.toString(j) + "," +
Double.toString(smatrix[i][j]));
 }
 fw.flush();
}
fw.close();

Chapter 7

137

By pressing F6, the Java class should create a file called matrix.csv in the $WORK_DIR/
output folder. If we open it up, we should see the following format:

Before proceeding further, some clarifications are due.

As you may have noticed, the line format for the CSV file to be used by the spectral algorithm
is as follows:

 node_i, node_j, similarity value

Here, node_i is the row of the similarity matrix starting from zero. The node_j column is the
column of the matrix starting from zero. The final value is the value of the i, j entry.

This format is mandatory. In our case, we tested a matrix representing a graph of 1000
vertices, so the expected CSV file should have 1,000,000 = (1000 x 1000) lines.

As you can see, when dealing with graphs, the matrix to be manipulated grows with the square
of the number of the vertices.

As a last word, we create a matrix using random values, but in real applications, the
creation of the similarity matrix is a very important task that would need some complex data
transformation.

Spectral Clustering in Mahout

138

How to do it…
Now we are ready for the interesting part. Basically, now that we have our input file, we simply
need to launch the correct command line. So open up a terminal window and type in the
following command:

bin/mahout eigencuts -i $WOKR_DIR/input/matrix.csv -o $WORK_DIR/output/
output -b 2 -d 1000

The result will be the cluster description as we have seen in Chapter 6, Canopy Clustering
in Mahout.

Using EigenCuts from Java code
Now that we have had some advice on how to use the command-line interface for EigenCuts,
it is now time to move on to the Java code. Basically, we will recode the same example in a
100 percent Java implementation.

Getting ready
We have just created the Maven project file, so the only thing to do is to create the new class.
So fire up NetBeans, and on the project icon, perform the following steps:

1. Right-click on New | Java Class.

2. Complete the form as shown in the following screenshot:

3. Click on Finish.

Chapter 7

139

Then you need to refer to the libraries of the Mahout framework as dependencies. To do this,
you need to do the following actions on the dependencies icon:

1. Right-click on Add dependency.

2. Complete the form as shown in the following screenshot:

3. Click on Add.

We are now ready to insert some code in the main method.

How to do it…
First of all, we need to create the set of parameters to be used. So, inside the main method of
the EigencutsClustering class, insert the following code for the parameter to be used:

String inputSimilarityMatrixFilePath;
String outputFilePath;
inputSimilarityMatrixFilePath = "/mnt/new/spectral/input/matrix.csv";
outputFilePath = "/mnt/new/spectral/outputn/output";

Spectral Clustering in Mahout

140

Path input = new Path(inputSimilarityMatrixFilePath);
Path output = new Path(outputFilePath);

Then we start with calculations. The first one is the following code:

DistributedRowMatrix A = AffinityMatrixInputJob.runJob(input,
outputCalc, dimensions);
Vector D = MatrixDiagonalizeJob.runJob(A.getRowPath(), dimensions);
long numCuts;
do {
 // first three steps are the same as spectral k-means:
 // 1) calculate D from A
 // 2) calculate L = D^-0.5 * A * D^-0.5
 // 3) calculate eigenvectors of L
 DistributedRowMatrix L =
 VectorMatrixMultiplicationJob.runJob(A.getRowPath(), D,
 new Path(outputCalc, "laplacian-" + (System.nanoTime() &
0xFF)));
 L.setConf(new Configuration(conf));
 // eigendecomposition (step 3)
 int overshoot = (int) ((double) eigenrank * OVERSHOOT_MULTIPLIER);
 LanczosState state = new LanczosState(L, eigenrank,
 DistributedLanczosSolver.getInitialVector(L));
 DistributedRowMatrix U = performEigenDecomposition(conf, L, state,
eigenrank, overshoot, outputCalc);
 U.setConf(new Configuration(conf));
 List<Double> eigenValues = Lists.newArrayList();
 for (int i = 0; i < eigenrank; i++) {
 eigenValues.set(i, state.getSingularValue(i));
 }
 // here's where things get interesting: steps 4, 5, and 6 are unique
 // to this algorithm, and depending on the final output, steps 1-3
 // may be repeated as well
 // helper method, since apparently List and Vector objects don't
play nicely
 Vector evs = listToVector(eigenValues);
 // calculate sensitivities (step 4 and step 5)
 Path sensitivities = new Path(outputCalc, "sensitivities-" +
(System.nanoTime() & 0xFF));
 EigencutsSensitivityJob.runJob(evs, D, U.getRowPath(), halflife,
tau, median(D), epsilon, sensitivities);
 // perform the cuts (step 6)
 input = new Path(outputTmp, "nextAff-" + (System.nanoTime() &
0xFF));

Chapter 7

141

 numCuts = EigencutsAffinityCutsJob.runjob(A.getRowPath(),
sensitivities, input, conf);
 // how many cuts were made?
 if (numCuts > 0) {
 // recalculate A
 A = new DistributedRowMatrix(input,
 new Path(outputTmp,
 Long.toString(System.nanoTime())), dimensions, dimensions);
 A.setConf(new Configuration());
 }
} while (numCuts > 0);

Once launched, you should see the correct completion of the task with the output creation.

How it works…
Using our code, we are now able to understand how the EigenCuts algorithm works.

The EigenCuts algorithm belongs to the big family of unsupervised learning algorithms. As we
have discussed before, Eigenvalues work with graphical representations where every vertex
is an n-dimensional data point. The edges in this case represent the strength of the relations
between the nodes. In this case, the graph is undirected, meaning that the relation between
the nodes x and y is the same as between the nodes y and x.

To some readers familiar with the graph theory, we point out that in mathematical terms for a
generic graph, the matrix that we called the affinity of similarity matrix has the same meaning
as the adjacency matrix, so we will use these terms synonymously.

The first step is to create a new matrix from the initial one. The trace matrix, that is, the
diagonal matrix where all the elements are 0 except the ones on the diagonal, is calculated
with the following formula:

1

n

jj ij
i

d A
−

=∑

The DistributedRowMatrix (called M) is the matrix calculated with the following formula:

1M A D−=

Spectral Clustering in Mahout

142

Here, 1A− is the inverse matrix of A. With these two matrices now, it is possible to create the
Laplacian matrix L that is given by the following definition:

1L A D
D

=

As a final step, we calculate the Eigenvectors of L. By definition, an Eigenvector X is a vector
for the Laplacian matrix L and its corresponding Eigenvalue λ is a real value, shown as follows:

XLX λ=

As a final step from the original matrix A, the edges, that is, the entries into the matrix A, are
removed if they are above the sensitivity or above a threshold.

Then we repeat the step for the new matrix A. The whole loop is iterated until no more
deletions have to be done.

So to resume, as we can see, the EigenCuts algorithm performs this way:

1. Calculate D from A.

2. Calculate L = D^-0.5 * A * D^-0.5.

3. Calculate the Eigenvectors of L.

4. Calculate sensitivities.

5. Perform the cuts.

Steps 2 to 5 are performed iteratively until a threshold condition is reached. What we have
done here is only implement the EigenCuts algorithm as described in its original paper; that is,
the Mahout implementation. However, as you can see, we did not have any way of seeing the
output in this way except by creating the new iterated matrix A.

Creating a similarity matrix from raw data
The main problem before using the EigenCuts algorithm is to create the similarity matrix from
raw data. This can be a little bit difficult when dealing with the n-dimensional data point.

In this recipe, we will detail how to obtain a similarity matrix based on raw data.

Getting ready
Before proceeding, we need to first prepare our environment. We will create a single solution
with Java to be able to generate the affinity initial matrix in one single solution.

Chapter 7

143

The two steps involved are as follows:

 f Create the folder environment

 f Download the dataset

So, open up a terminal console and type in the following set of commands:

export WORK_DIR=/mnt/cancer

mkdir $WOKR_DIR/input

mkdir $WOKR_DIR/output

cd $WOKR_DIR/input

wget http://archive.ics.uci.edu/ml/machine-learning-databases/breast-
cancer-wisconsin/wdbc.data

This will download a file called wdbc.data into the /mnt/cancer/input folder. This is one
of the most used datasets in a data mining task and it is freely available from the link of the
machine learning repository available at the URL http://archive.ics.uci.edu/ml/
datasets/Breast+Cancer.

For a whole description of the dataset, you could take a look at the rich website of the
machine learning repository maintained at the URL http://archive.ics.uci.edu/ml/.

The dataset is a CSV file that contains 569 rows (every row is a medical observation on one
patient) and every observation contains the following attributes:

 f ID number

 f Diagnosis (M = malignant, B = benign)

 f Ten real-valued features are computed for each cell nucleus:

 � Radius (mean of distances from center to points on the perimeter)

 � Texture (standard deviation of gray-scale values)

 � Perimeter

 � Area

 � Smoothness (local variation in radius lengths)

 � Compactness (perimeter^2 / area - 1.0)

 � Concavity (severity of concave portions of the contour)

 � Concave points (number of concave portions of the contour)

 � Symmetry

 � Fractal dimension

The features are computed from a digitized image of a fine needle aspirate (FNA) of a breast
mass. They describe the characteristics of the cell nuclei present in the image.

Spectral Clustering in Mahout

144

So we have a 32-dimensional dataset that needs to be transformed into a 569 x 569 square
affinity matrix.

How to do it…
Now based on our input folder, we will create a class that outputs the similarity matrix. The
steps involved in creating and coding the class are as follows:

 f Create the class

 f Read the original file to create a new CSV file, all filled with numeric values

 f Code the affinity matrix

 f Save the affinity matrix into a sequence file

The steps involved are as follows:

1. You can start creating the environment by firing up NetBeans by right-clicking on the
project folder and adding a new Java class called CreateSimilarityMatrix. The
screen should look as follows:

2. Now enter the following properties for the class:
 String inputcsvFile = "/mnt/cancer/wdbc.data";
 String outputcsvFile = "/mnt/cancer/cancernumerical.csv";
 BufferedReader br = null;
 BufferedWriter wr = null;
 String line = "";
 String cvsSplitBy = ",";

Chapter 7

145

3. Now enter the main method and add the following code:
 ETL2Numeric();
 createMatrix();
 SaveSimilarityMatrix();

4. Next, we only need to write the following code into every method that we add:
private void ETL2Numeric() {
 try {
 br = new BufferedReader(new FileReader(inputcsvFile));
 wr = new BufferedWriter(new FileWriter(outputcsvFile));
 while ((line = br.readLine()) != null) {
 String[] observation = line.split(cvsSplitBy);
 String[] observation2write = observation;
 observation2write[1] = "m".equals(observation[1].
toLowerCase()) ? "1": "0";
 wr.write(line + "\r\n");
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 if (br != null) {
 try {
 br.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 System.out.println("Done");
}
And
private void createMatrix() {
 try {
 br = new BufferedReader(new FileReader(inputcsvFile));
 int k = 0;
 while ((line = br.readLine()) != null) {
 String[] observation = line.split(cvsSplitBy);
 for (int j= 0; j < observation.length; j++)
 {
 matrix[k][j] =
 Double.parseDouble(observation[j]);
 }
 k++;
 }

Spectral Clustering in Mahout

146

 for (int i = 0; i < matrix.length; i++)
 {
 double d = 0;
 int start = i+1;
 for (int j = i+1; j < matrix.length-1; j++)
 {
 d = MeanErrorDistance(matrix[i],matrix[j]);
 }
 if (d < 0.1)
 {
 AffinityMatrix[i][start] = d;
 AffinityMatrix[start][i] = d;
 }
 }

 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 if (br != null) {
 try {
 br.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 System.out.println("Done");
}

5. At the end of the code, we add the following code in the SaveSimilarityMatrix
method:
private void SaveSimilarityMatrix() throws IOException {
 Path path = new Path("/mnt/cancer/output/cancersequenced");
 org.apache.hadoop.fs.RawLocalFileSystem fs = new org.apache.
hadoop.fs.RawLocalFileSystem();
 SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf,
path, IntWritable.class, DoubleWritable.class);
 for (int i = 0; i < AffinityMatrix.length;i++)
 for (int j = 0; j < AffinityMatrix[i].length;j++)
 writer.append(new IntWritable(i), new
DoubleWritable(AffinityMatrix[i][j]));
 System.out.println("Done");
}

Chapter 7

147

How it works…
As we mentioned before, we need to transform every node of our graph that is an observation
into a vertex and more importantly, to create a way to represent the distance between two
nodes (observation).

This is done in three steps:

1. Transform every non-numerical attribute into a numerical one.

2. Define a distance between two observations and activate a threshold value to define
how near the two observations are.

3. Save the matrix created in a sequence file.

So in our algorithm, the first part is pretty easy being that the only non-numerical attribute is
m/b represented on the first CSV column whenever the observation confirms a malignant or
benign tumor mass in the breast. So the first loop roughly transforms the original CSV file into
a new one where all the observations are made of a numerical attribute. So for example, the
first observation that consists of a single row like the following:

842302,M,17.99,10.38,122.8,1001,0.1184,0.2776,0.3001,0.1471,…

The preceding row is transformed into the following:

842302,1,17.99,10.38,122.8,1001,0.1184,0.2776,0.3001,0.1471,..

Next, there is the most interesting one. We need to define what the weight of the edge that
connects two nodes is, that is, two observations.

To do this, we adopt a rough yet very efficient approach. Apart from the m/b tag, we compute
the Euclidean distance between the two remaining lists of 30 values. We will warn you that
this distance is the worst one to be used but we have shown it only to allow you to understand
what is going on behind the scenes.

So for example, the first two new rows are:

842302,1,17.99,10.38,122.8,1001,0.1184,0.2776,0.3001,0.1471,…
842517,1,20.57,17.77,132.9,1326,0.08474,0.07864,0.0869

The Euclidean distance that we remember is defined as follows:

() () () ()2 2 2
1 1 2 2, ... n nd x y x y x y x y= − + − + + −

So in our case, the distance for the first two observations is:

() () ()2 2, 1 1 17.99 20.57 ...d x y = − + − +

Spectral Clustering in Mahout

148

The method devoted to this is the MeanErrorDistance method. It takes two arrays of
double values representing the observations and returns the distance:

 private double MeanErrorDistance(double[] d, double[] d0) {
 double med = 0;
 double sum = 0;
 for (int i = 1; i < d.length; i++)
 {
 sum += (d[i]-d0[i])* (d[i]-d0[i]);
 }
 med = Math.sqrt(sum);
 return med;
 }

As you may have noticed, we have two assumptions on the method:

 f The first one is that the computation starts from index 1, ignoring the first column of
the observation, that is, recordID.

 f The second one is that the mean error distance is zero if we have the array d equal to
d0, so the two observations have the same outcome.

Another important thing to point out is that as the similarity matrix is symmetrical, so is
the entry:

ij jiA A=

In the code, every time we found that we needed to enter the non-zero distance, we added it
in two different indexes because the matrix is symmetric:

AffinityMatrix[i][start] = d;
AffinityMatrix[start][i] = d;

Note that the loop does not spam the whole set every time because the AffinityMatrix
object is a symmetric matrix. So for example, if we consider the two first observations,
we give value to the entry row 1 and column 2 as well as row 2 and column 1 of the
AffinityMatrix object.

At the end, we need to save our result to a sequence file so that our affinity matrix could be
used by another application (in our case, a slight change of the previous recipe).

Considering that we have a whole matrix Java object called AffinityMatrix, we can save
the first entry with the index of the Java array matrix to a sequence file by assigning and then
the value of the entry as done by the piece of code.

private void SaveSimilarityMatrix() throws IOException {
 Path path = new Path("/mnt/cancer/output/cancersequenced");

Chapter 7

149

 org.apache.hadoop.fs.RawLocalFileSystem fs = new org.apache.hadoop.
fs.RawLocalFileSystem();
 SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf, path,
IntWritable.class, DoubleWritable.class);
 for (int i = 0; i < AffinityMatrix.length;i++)
 for (int j = 0; j < AffinityMatrix[i].length;j++)
 writer.append(new IntWritable(i), new
DoubleWritable(AffinityMatrix[i][j]));
 System.out.println("Done");
}

From the point of the EigenCuts algorithm, it would be better to save the affinity matrix
using the DistributedRowMatrix method, that is, the standard method used by
the Mahout implementation of the algorithm. Unfortunately, the constructor of the
DistributedRowMatrix method uses a path to a sequence file:

public DistributedRowMatrix(Path inputPath, Path outputTmpPath, int
numRows, int numCols, boolean keepTempFiles)

So from our point of view, it is better to directly create a sequence file that can be used as
the input.

Using spectral clustering with image
segmentation

In this recipe, we propose a well-known example of using spectral clustering techniques in
image segmentation. The problem can be described by stating that each image can have
subjects that can be arranged in clusters. A practical application can be given in a large photo
to identify the group of subjects that can be clustered together.

So, we will start from a picture and transform it into a similarity matrix that is the input for the
EigenCuts algorithm.

The output will be the matrix that can be used to determinate the clusters. The problem
could look like a difficult one. However, these techniques have been applied fruitfully in
detecting breast cancer or ovarian cancer using a mammogram image taken using SAR
techniques. For the willing reader, take a look at this link to a medical oriented paper that will
describe these techniques in a real-world scenario: (http://www.ncbi.nlm.nih.gov/
pubmed/17015928).

Getting ready
In this recipe, we are not interested in the algorithm that we described in the previous recipes,
but we are interested in the way we create a similarity matrix from an image. The advantage of
grouping images is clear when we need to classify images in a cluster.

Spectral Clustering in Mahout

150

We also need to point out that medical images are created using a high-resolution vector
format. Also, in most of the cases, even though the file format that is used to capture this
image is a propriety one like the DICOM format, it is not so easy to read the images. As an
example, we have a DICOM image downloaded from the USA National Biomedical Image
Archive, as shown in the following screenshot:

Parsing a DICOM file to create an affinity matrix is out of the scope of this recipe. So, we
will use an image in PNG format. Do not forget that if you are thinking of using the same
techniques for a real production environment, it is better to use a DICOM to BMP converter,
because they do not lose important information during the conversion and they can be called
using many parameters to optimize the output format.

Chapter 7

151

To get started, as usual we create our working environment by typing the following sequence
of commands in a terminal console:

export WORK_DIR=/mnt/tac

mkdir $WORK_DIR

cd $WORK_DIR

Now it is time to download our test image by giving the following command:

wget http://www.intechopen.com/source/html/19695/media/image2.png

You should now have an image downloaded into the $WORK_DIR folder.

Now create a Java class called ImageSegmentation as we did in the previous recipes.

How to do it…
Now that we have created the class called ImageSegmentation in the Getting ready
section, we only need to add three methods that will perform the following steps:

 f Converting the image into a similarity matrix

 f Computing the EigenCuts algorithm

 f Converting the final matrix into an image

For every step, we need to code the corresponding method inside the main class. To do this,
we will code every preceding step into the following methods:

ConvertImageIntoSimilarityMatrix
ComputingEigencuts
ConvertingSimilarityMatrixToImage

The steps involved are as follows:

1. Let us start with the ConvertImageIntoMatrix method, whose code is pretty easy:
public static void ConvertImageIntoSimilarityMatrix()
{
 File inputFile = new File("/mnt/tac/image2.png");
 BufferedImage bufferedImage = ImageIO.read(inputFile);
 int w = bufferedImage.getWidth();
 int h = bufferedImage.getHeight(null);
 double[][] A = new double[w][h];
 for (int i = 0; i <w; i++)
 {
 for (int j=0; j < h ; j++)
 {

Spectral Clustering in Mahout

152

 A[i][j] = A[j][i] = org.apache.mahout.common.distance.
ManhattanDistanceMeasure.distance(, bufferedImage.getRGB(j,i));
 }
 }
}

2. Then we need to perform the inverse operation and output the image:
public static void ConvertSimilarityMatrixToImage(string
inputFile))
{
 File inputFile = new File("/mnt/tac/image-out.png");
 BufferedImage bufferedImage = ImageIO.write(outputFile);
 for (int i = 0; i <w; i++)
 {
 for (int j=0; j < h ; j++)
 {
bufferedImage.setRGB(j,i));
 }
 }
}

3. Once the algorithm ends up in the $WORK_DIR folder, there should be an additional
image like the following screenshot:

Chapter 7

153

How it works
The difficult part of this algorithm is that we need to transform every pixel of one single image
into an n-dimensional-vector array composed by numbers.

An image pixel consists of x and y coordinates that correspond to the position of the pixels,
and the color is represented by a 4-byte (32 bits) integer:

00000000 00000000 00000000 11111111

Here, the first group of bytes represents: alpha, red, green, and blue respectively. So from
this data, we can calculate the mean for every entry. So every pixel can be associated to a
numerical array. Now, to evaluate the distance between two pixels, we only need to use the
distance between two numerical arrays associated with two different pixels. The piece of code
devoted to this is the following:

int[][] A = new int[w][h];
for (int i = 0; i <w; i++)
{
 for (int j=0; j < h ; j++)
 {
 A[i][j] = A[j][i] = org.apache.mahout.common.distance.
ManhattanDistanceMeasure.distance(bufferedImage.getRGB(i,j),
bufferedImage.getRGB(j,i));
 }
}

As we can see, we basically assume the Manhattan distance as the main distance for evaluating
how far two pixels are from each other. As we are evaluating the distance between two arrays of
integer numbers, it is not so difficult to test this by using different distance measures.

Once we have done our EigenCuts analysis, we can move on to transforming the final matrix
into an image. The method basically uses the ImageBuffered object to output the final
image using its setRGB method.

8
K-means Clustering

Following up from the previous chapter's recipes, we will consider a way to use the K-means
clustering algorithm.

The recipes that we will cook in this chapter are:

 f Using K-mean clustering from Java code

 f Clustering traffic accidents using K-means

 f K-means clustering using MapReduce

 f Using K-means clustering from the command line

Introduction
The K-means algorithm is one of the oldest and well-established algorithms for clustering
purposes. The first version is dated 1957, but the modern implementation of it has been in
place since 1982. The algorithm has proved to be very efficient for classification purposes.
The fields of application for the K-means algorithm are medicine, agriculture, and finance.
Mahout's implementation also benefits from the possibility offered by the MapReduce
framework, so users can use the algorithm with a very large dataset. However, the algorithm
requires a prior input parameter such as the number of clusters, and a wrong initial choice of
this parameter can greatly affect the performance of the algorithm in terms of classification
and running time. It is also possible to evaluate some of the initial parameters using the
Canopy clustering procedure. We will not see these sophisticated methods, but we will give
the reader some hints on the initial parameters.

Using K-means clustering from Java code
In this fast example, we will code a full example using dummy data to see how K-means
clustering works.

K-means Clustering

156

Getting started
Basically, we only need to create the Maven project for this chapter, add the class, and then
code it. Considering that we are not reading data, we do not need to download anything.

How to do it…
1. Let us fire up a console and type in the following command:

mvn archetype:create -DarchetypeGroupId=org.apache.
maven.archetypes -DgroupId=com.packtpub.mahoutcookbook
-DartifactId=chapter08

2. Now, remove the Java class created by default (App.java) by right-clicking on the
class name of the folder and choosing Delete from the menu items.

3. Now add, as usual, a new class called DummyKmeans, as we have seen, in
the recipes in Chapter 7, Spectral Clustering in Mahout. At the end, add the
dependencies to the Mahout source code we downloaded. You should arrive
at a NetBeans project structure as follows:

4. Now add the following code inside the main method of the DummyKmeans class:
//generate sample dummy vectors
generateSamples(sampleData, 400, 1, 1, 3);
generateSamples(sampleData, 300, 1, 0, 0.5);
generateSamples(sampleData, 300, 0, 2, 0.1);

//create the first cluster vectors
List<Vector> randomPoints = RandomSeedGenerator.
chooseRandomPoints(points, k);
List<Cluster> clusters = new ArrayList<Cluster>();

// associate the cluster with the random point
int clusterId = 0;

Chapter 8

157

for (Vector v : randomPoints) {
 clusters.add(new Cluster(v, clusterId++));
}
// execute the kmeans cluster
List<List<Cluster>> finalClusters = KMeansClusterer.
clusterPoints(points, clusters, new EuclideanDistanceMeasure(), 3,
0.01);

// display final cluster center
for(Cluster cluster : finalClusters.get(finalClusters.size() - 1))
{
 System.out.println("Cluster id: " + cluster.getId() + " center:
"+ cluster.getCenter().asFormatString());
}

5. By running the class file, you should get the following output:

How it works…
Basically, the K-means algorithm works in the following three steps:

1. The algorithm starts with some n-dimensional vectors representing points in
n-dimensional space.

2. As input, we also have a set of k vectors representing the centroids of the clusters.

3. With a loop, the cluster vectors are moved until a minimum threshold or a number of
iterations have been done.

K-means Clustering

158

The initial centroids can be chosen from some initial points or randomly. The power of the
K-means algorithm is due to the fact that even if we choose random initial centroids, we have
an output. Using a 10,000 foot view of the algorithm, we perform the following steps:

1. Input a number of centroids.

2. Assign all the data points to one of these centroids.

3. The centroids are recalculated.

Steps 2 and 3 are repeated until a good estimation is reached (no more improvement is
possible) or a number of iterations have been reached.

In this case, a picture is worth a 1,000 words as is the following one:

As you can see, we are dealing with 2D sized vectors (the circle dots) while the centroid
clusters are the three square points. At every iteration, the centroids move themselves, so
they are re-estimated, until the convergence.

Chapter 8

159

Our dummy example works in the same way. We first create a random set of vectors. This is
done by the generateSamples method, whose code is as follows:

public static void generateSamples(List vectors, int num,double mx,
double my, double sd) {
for (int i = 0; i < num; i++) {
 sampleData.add(
 new DenseVector(new double[] {UncommonDistributions.rNorm(mx,s
d),UncommonDistributions.rNorm(my, sd)}));
 }
 }

Then, the method accepts a list and for a predefined number of times, it adds (at every
iteration) a point whose coordinates are calculated using a random Gaussian norm, with
values between the two maximum values.

The method itself is called three times, as we want to build three sets of points that could
be clustered with the following parameters:

generateSamples(sampleData, 400, 1, 1, 3);
generateSamples(sampleData, 300, 1, 0, 0.5);
generateSamples(sampleData, 300, 0, 2, 0.1);

So, we have a total of 1,000 points divided into three clusters. You might have noticed that we
also create a limitation on the random min/max value to be taken, because we would like to
have a concentrated cluster so that the iterations do not take so long to complete.

Next, we create the centroid vectors that contain three randomly chosen center points. The
code to create them is as follows:

List<Vector> randomPoints =
 RandomSeedGenerator.chooseRandomPoints(points, k);

Notice that we decide how many final cluster centroid points we should have before starting
the computational task.

Next, we initialize the clusters vectors with the initial chosen random points, by simply using
the following code:

List<Cluster> clusters = new ArrayList<Cluster>();
int clusterId = 0;
for (Vector v : randomPoints) {
 clusters.add(new Cluster(v, clusterId++));
}

K-means Clustering

160

So, we have some out clusters that are initialized with the randomPoints objects. Then, we
have the core of our analysis done using the simple code:

List<List<Cluster>> finalClusters =
 KMeansClusterer.clusterPoints(points, clusters, new
 EuclideanDistanceMeasure(), 3, 0.01);

The whole job is handled by Mahout's KMeansClusterer object using the clusterPoints
method. The algorithm basically works with the following parameters:

 f It is the initial set of points

 f It clusters the initialized random chosen centroids

 f It is the distance to be used for evaluation if a point is near to a cluster centroid

 f It is the number of clusters to form, which is 3 in this case

 f It is the threshold value to be used to define the end of the computation, which is
0.01 in this case

The output is the set of centroids that can be printed to the standard console using the last
part of our code:

// display final cluster center
for(Cluster cluster : finalClusters.get(finalClusters.size() - 1)) {
 System.out.println("Cluster id: " + cluster.getId() + " center:
 "+ cluster.getCenter().asFormatString());
}

The K-means algorithm has been demonstrated to find the final clusters in a very fast way. It
can also be used by changing the number of clusters. In our example, we used three clusters,
but you can also try this with more clusters. As a rough way to estimate the number of clusters
based on the initial number of points, you can use the following rule of thumb:

2
nk <=

Where n is the number of points and k is the number of clusters to be generated. So, for
example, if you are using a million points, your first step should be to use 707 as the value
of k, so that your first run will create 707 clusters. The preceding calculation gives the
following result:

1000000 50000 707,01
2

k <= = =

Chapter 8

161

Obviously, the number of clusters is an integer one, so we choose the first integer number,
which is 707.

The other important variable is EuclideanDistanceMeasure, which is the way to find the
proximity of one point to the cluster centroids. We have already seen in the previous chapter
how this distance is calculated. We would like to point out that Mahout also provides another
way to calculate distances:

 f The distance between two vectors of double value respectively ix and iy , is referred
to as SquaredEuclideanDistanceMeasure; the formula for this is as follows:

() () () ()2 2 2
1 1 2 2 1, ... n nd x y x y x y x y= − + − + + −

 f The ManhattanDistanceMeasure is calculated as:

() 1 1 2 2, ... n nd x y x y x y x y= − + − + + −

 f The CosineDistanceMeasure is calculated as:

() 1

2 2

1 1

,

n

i i
i

n n

i i
i i

x y
d x y

x y

=

= =

=
∑

∑ ∑

 f The TanimotoDistanceMeasure is calculated as:

() 1

2 2

1 1 1

,

n

i i
i

n n n

i i i i
i i i

x y
d x y

x y x y

=

= = =

=
+ −

∑

∑ ∑ ∑

 f The WeightedDistanceMeasure is calculated as:

()
2

1
,

n
i i

i i i

x yd x y
s s−

= −

∑

As an exercise, you change the code to see how different the final clusters are, if you uses
different distances.

K-means Clustering

162

Before continuing with the next recipe, we also need to consider that we choose the initial
values of the cluster at random. This seems a very poor performance approach when dealing
with juggernaut datasets. A simple way to choose the centroid that we have tested is the
following one: for every data point find the min and max of every coordinate i. Then, distribute
your initial centroid by distributing the number of the i position from the min to the max value.
So, for example, if you have 1,000,000 dataset points with five observed values, we could
choose 707 centroids as the total number. Then, let us take the first value in position one
of every dataset point. Finding h equals to the max-min value of all the numbers in position
one. Then, call m=h/707 to create 707 initial centroids such that the first one has its first ith
coordinate min, then the second vector h, the third one 2h, and so on. The final result is that
you will have to create a lattice of 7070 points that you can use as first centroids. We refer you
to the cookbook code of this chapter for an example class.

We only detail the expression of the first three. For CosineDistance, we suggest
the Tanimoto distance at the following links: http://reference.wolfram.com/
mathematica/ref/CosineDistance.html and http://en.wikipedia.org/wiki/
Jaccard_index#Tanimoto_Similarity_and_Distance.

Clustering traffic accidents using K-means
In this recipe we will give you a full approach to the K-means clustering using a real dataset.

Getting ready
To get started, let us first prepare our environment. So, as usual, we create the $WORK_DIR
console variable and download our real dataset.

Let us open up a terminal window and type in the following series of commands:

export WORK_DIR=/mnt/new/traffic

cd $WORK_DIR

wget http://fimi.ua.ac.be/data/accidents.dat.gz

tar –xvzf http://fimi.ua.ac.be/data/accidents.dat.gz

So, we have the file accidents.dat downloaded and decompressed ready to be used. By
opening it, we can see the following entries:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
28 29 30 31

2 5 7 8 9 10 12 13 14 15 16 17 18 20 22 23 24 25 27 28 29 32 33 34 35 36
37 38 39

7 10 12 13 14 15 16 17 18 20 25 28 29 30 33 40 41 42 43 44 45 46 47 48 49
50 51 52

Chapter 8

163

1 5 8 10 12 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30 31 41 43 46
48 49 51 52 53 54 55 56 57 58 59 60 61

5 8 10 12 14 15 16 17 18 21 22 24 25 26 27 28 29 31 33 36 38 39 41 43 46
56 62 63 64 65 66 67 68

7 8 10 12 17 18 21 23 24 26 27 28 29 30 33 34 35 36 38 41 43 47 59 63 66
69 70 71 72 73 74 75 76 77 78 79

This dataset of traffic accidents is obtained from the National Institute of Statistics (NIS)
for the region of Flanders (Belgium) for the period 1991-2000. More specifically, the data is
obtained from the Belgian "Analysis Form for Traffic Accidents", which should be filled out by a
police officer for each traffic accident that occurs with injured or dead casualties on a public
road in Belgium. In total, 340.184 traffic accident records are included in the dataset.

For a full description of every variable involved, we refer you to the original paper by Karolien
Geurts available at http://fimi.ua.ac.be/data/accidents.pdf. We warn you that if
you would like to use this dataset, it is mandatory to cite the author.

Moving on, we are now ready for the interesting part: we are going to use the K-means
clusters algorithm to determine clusters of the accidents to get the points where some
accidents happen more frequently.

How to do it…
1. Open up NetBeans and add a new class with a main method to the chapter08

Maven project we created in the previous recipe. The code creation window should
be the following one:

K-means Clustering

164

2. Now we need to add the following code into the class:

List<Vector> sampleData = new ArrayList<Vector>();
String accidentsFile = "/mnt/traffic/accidents.dat";
BufferedReader br = new BufferedReader(new
FileReader(accidentsFile));

String line;
int rows = 0;
while ((line = br.readLine()) != null)
{
 rows++;
 String[] svalues = line.split("\\s+");
 double[] dvalues = new double[svalues.length];

 sampleData.add(new DenseVector(dvalues));

}
int k = (int) Math.round(Math.sqrt(rows/2));
List<Vector> randomData = new ArrayList<Vector>();

for (int i = 0; i < k;i++)
{
 randomData.add(sampleData.get(i));
}
List<Cluster> clusters = new ArrayList<Cluster>();

int clusterId = 0;
for (Vector v : randomData) {
 clusters.add(new Cluster(v, clusterId++,
WeightedEuclideanDistanceMeasure ()));
}

List<List<Cluster>> finalClusters = KMeansClusterer.
clusterPoints(sampleData, clusters,new
WeightedEuclideanDistanceMeasure (), 3, 0.01);
for(Cluster cluster : finalClusters.get(finalClusters.size() - 1))
{
 System.out.println("Cluster id: " + cluster.getId() + "
center: " +
 cluster.getCenter().asFormatString());
}

Chapter 8

165

The output should be like the following:

How it works…
Basically, we only recode the previous example using some tricks. The first one is to transform
the input value into a format—the vector one that can be handled by Mahout.

First of all, we read the file line by line, and convert every line that represents our
n-dimensional point in the cluster into a series of double coordinates:

String accidentsFile = "/mnt/traffic/accidents.dat";
BufferedReader br = new BufferedReader(new FileReader(accidentsFile)
);

String line;
int rows = 0;
while ((line = br.readLine()) != null)
{
 rows++;
 String[] svalues = line.split("\\s+");
 double[] dvalues = new double[svalues.length];

 sampleData.add(new DenseVector(dvalues));

}

K-means Clustering

166

We also store the total number of observations, that is, the number of points in our
n-dimensional dataset, and then calculate using our rough estimation of the final number
of clusters.

So, it is time to create the initial set of random points. In the previous recipe, we coded them
randomly, while in this case, we decide to assign to them to the first k observations of our
input file:

int k = (int) Math.round(Math.sqrt(rows/2));
List<Vector> randomData = new ArrayList<Vector>();

for (int i = 0; i < k;i++)
{
 randomData.add(sampleData.get(i));
}

List<Cluster> clusters = new ArrayList<Cluster>();

int clusterId = 0;
for (Vector v : randomData) {
 clusters.add(new Cluster(v, clusterId++,
WeightedEuclideanDistanceMeasure ()));
}

Next, we evaluate everything using the same code with the only difference being that now
we can re-run the same code using WeightedEuclideanDistanceMeasure as a measure
of similarity.

We invite you to experiment with how the cluster changes using different distance measures.

See also
 f The accidents dataset is fully described at http://fimi.ua.ac.be/data/

accidents.pdf

K-means clustering using MapReduce
Until now, we have seen K-means used in a sequential way, but as usual, the power of Mahout
is the implementation done for the algorithm using the MapReduce paradigm.

In this example, we will code a fully K-means based analysis using MapReduce.

Chapter 8

167

Getting ready
We only need to add the following class to our existing chapter 08 Maven project; the class
will be named as follows:

How to do it…
We will now code a complete example in Java to undertake a K-means cluster analysis using
the MapReduce framework:

1. Add the following code into the main method:
public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();

 // setting mapping and reducers
 conf.setInt(JobContext.NUM_REDUCES, 1);

 conf.setInt(JobContext.NUM_MAPS, 4);

 conf.set("numCluster", "5");
 conf.set("numAuxCluster", "500");

K-means Clustering

168

 Job job = new MRSJob(conf, "KMeansParallel");

 job.setOutputKeyClass(IntWritable.class);
 job.setOutputValueClass(Clusters.class);

 job.setMapperClass(KMeansMapper.class);
 job.setReducerClass(KMeansReducer.class);

 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.waitForCompletion(true);
}

2. For the remaining code, we invite you to refer to the book's code. We only cite
the interesting methods that are implemented into the mapper; the mapper
implementation is as follows:
public void map(LongWritable key, Text value, Context context)
 throws IOException, InterruptedException {

 // Input format: one data point per line, components delimited
by spaces
 final List<Double> doubleValues = new ArrayList<Double>();
 final StringTokenizer tk = new StringTokenizer(value.
toString());
 while(tk.hasMoreElements()) {
 final String token = tk.nextToken();
 doubleValues.add(Double.parseDouble(token));
 }

 double[] dv = new double[doubleValues.size()];
 for(int i=0; i<doubleValues.size(); i++) {
 dv[i] = doubleValues.get(i);
 }
 DenseVector dvec = new DenseVector(dv);
 DenseVectorWritable sample = new DenseVectorWritable(dvec);

 // add sample to local auxiliary clusters
 this.cache.addSample(sample);

 // first k points are chosen as initial centroids
 if (nextCentroidToInit < k) {
 this.clusters.set(nextCentroidToInit, new Cluster(sample,

Chapter 8

169

sample));
 this.nextCentroidToInit += 1;
 } else if (nextCentroidToInit == k) {
 // send initial centroids to reducer
 context.write(new IntWritable(0), this.clusters);
 this.nextCentroidToInit += 1;
 }
}

The reducer implementation is as follows:

protected void reduce(IntWritable key, Iterable<Clusters> valu
es,ReduceContext<IntWritable, Clusters, IntWritable, Clusters,
Clusters> context) throws IOException, InterruptedException {

 // Merge the list of clusters into one set of clusters
 Clusters results = null;
 for(Clusters clusters : values) {
 if(results == null) {
 results = clusters;
 } else {
 results.merge(clusters);
 }
 }

 Double error = results.getMSE();

 LOG.info("Last error " + lastError + ", current error " +
error);

 if (lastError < Double.MAX_VALUE &&
 error <= lastError + epsilon &&
 error >= lastError - epsilon) {
 // MSE has changed by less than epsilon: Emit final result
 context.write(new IntWritable(0), results);
 LOG.info("Final result written.");
 } else {
 // MSE has changed by more than epsilon: Send recomputed
preliminary clusters to mappers to start a new
 // iteration
 this.lastError = error;
 results.computeNewCentroids();
 context.restream(results);
 LOG.info("Preliminary result restreamed.");
 }
}

K-means Clustering

170

How it works…
As we have already discussed the parallelization of Mahout, the K-means algorithm is done
using the MapReduce paradigm. We will provide a brief description of how the MapReduce
implementation works at a higher level.

Every Mahout MapReduce job involves two steps. In the map we perform the
following actions:

1. Read the cluster centers into memory from a sequence file as we saw in Chapter 3,
Integrating Mahout with an External Datasource.

2. Iterate over each cluster center for each input key/value pair.

3. Measure the distances and save the nearest center that has the lowest distance to
the vector.

4. Write clustercenter with its vector to the filesystem.

In the reduce step (we get associated vectors for each center), we perform the
following actions:

1. Iterate over each value vector and calculate the average vector. (Sum up each vector
and divide each part by the number of vectors we received.)

2. This is the new center, save it into a SequenceFile.

3. Check the convergence between clustercenter that is stored in the key object
and the new center. If they are not equal, increment an update counter.

Run this whole thing until nothing is updated anymore. The reduce step will end because the
iteration of the error does not last forever if the mean is under the defined threshold.

As a basic initial step, you need to create the cluster and the sample data in a sequence file
so that it can be handled both by the mapper as for the reducers. You might have noticed that
we choose the following as the number of clusters:

conf.set("numCluster", "5");

However, you are free to modify the code according to your own needs.

Using K-means clustering from the
command line

By following what we have done in Chapter 7, Spectral Clustering in Mahout, we will now
create a fully K-means clustering algorithm, but as the algorithm works with similarity
matrices, we need to create them.

Chapter 8

171

Getting ready
To do this, let us first create the input and output folders. So open up the command-line
terminal and type in the following command:

export WORK_DIR=/mnt/kmeans

mkdir $WOKR_DIR/reuters-out-seqdir

mkdir $WOKR_DIR/reuters-out

We have many folders because we need to transform the original files into sequence files that
can be manipulated by the K-means cluster implementation done by Mahout.

Now type in the following command:

cd $WORK_DIR

Then download the reuters dataset into the folder by typing the following wget command:

wget http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.tar.gz -o
${WORK_DIR}/reuters21578.tar.gz

Now, it is time to extract everything using the following command:

tar xzf $WORK_DIR/reuters21578.tar.gz -C $WORK_DIR/reuters-sgm

This will create a folder called reuters-sgm inside the $WORK_DIR folder, which you set up
previously with the following contents:

K-means Clustering

172

Before continuing, a word on where this dataset comes from. The reuters dataset contains
some documents that were assembled and indexed with categories by personnel from Reuters
Ltd. This is very old and so is often used in data mining research. As you can see, the core data
of the documents is contained in the .sgm files that display such kind of content:

From this document, we need to create the corresponding sequence files that represent the
affinity matrix, which is needed as the starting point for the K-means algorithm.

How to do it…
To summarize, the steps involved in this algorithm are as follows:

1. Get the dataset.

2. Convert the input in to sequence file format.

3. Calculate the vectors' data points converting text occurrence to number.

4. Run the K-means algorithm.

Chapter 8

173

A detailed analysis of this algorithm is as follows:

1. To create the sequence files, you need to invoke the following command from
the command line:
mahout org.apache.lucene.benchmark.utils.ExtractReuters $WORK_DIR/
reuters-sgm $WORK_DIR/reuters-out

The command output should be the following:

Running on hadoop, using /home/hadoop-mahout/hadoop-1.0.4/bin/
hadoop and HADOOP_CONF_DIR=

MAHOUT-JOB: /home/hadoop-mahout/NetBeansProjects/trunk/examples/
target/mahout-examples-0.8-SNAPSHOT-job.jar

13/05/10 17:25:28 WARN driver.MahoutDriver: No org.apache.lucene.
benchmark.utils.ExtractReuters.props found on classpath, will use
command-line arguments only

Deleting all files in /mnt/kmeans/reuters-out-tmp

13/05/10 17:25:31 INFO driver.MahoutDriver: Program took 3568 ms
(Minutes: 0.0594833333

The corresponding new folder content should look like the following screenshot:

K-means Clustering

174

2. The command dumps the content of the sequence files into the .txt files. A single
file displays the content:

3. Now that we have disassembled the whole corpus into separate files, it is time to give
the command to create the sequence files based on the corpus we already extracted:
mahout seqdirectory -i $WORK_DIR/reuters-out -o $WORK_DIR/
reuters-out-seqdir -c UTF-8 -chunk 5

The result is now saved in the reuters-out-seqdir directory.

Chapter 8

175

4. Now that we have created the files, we can start with the interesting part. Basically,
we need to give the following command:
mahout seq2sparse -i $WORK_DIR/reuters-out-seqdir/ -o $WORK_DIR/
reuters-out-seqdir-sparse-kmeans --maxDFPercent 85 --namedVector

We will create the sparse vector files that one can see in the following screenshot:

5. Now we have everything we need to conduct our analysis using K-means. The core of
the analysis is done by implementing the following command:
mahout kmeans -i $WORK_DIR/reuters-out-seqdir-sparse-kmeans/tfidf-
vectors/ -c $WORK_DIR/reuters-kmeans-clusters -o $WORK_DIR/
reuters-kmeans

-dm org.apache.mahout.common.distance.CosineDistanceMeasure

-x 10 -k 20 -ow

K-means Clustering

176

The result is a sequence file created in $WORK_DIR/reuters-kmeans:

6. Finally, you would like to see the final result, we have:
mahout clusterdump

-i $WORK_DIR/reuters-kmeans/clusters-*-final

-o $WORK_DIR/reuters-kmeans/clusterdump

-d $WORK_DIR/reuters-out-seqdir sparse-kmeans/dictionary.file-0

-dt sequencefile -b 100 -n 20 --evaluate -dm org.apache.mahout.
common.distance.CosineDistanceMeasure -sp 0

--pointsDir $WORK_DIR/reuters-kmeans/clusteredPoints

How it works…
Before describing the computational steps involved, we define the following symbols involved:

 f Raw data matrix (R): This is the (k xn) dimensional data that the user is interested
in clustering.

 f Similarity matrix (S): This a k X k transformation of R that shows how "related" each
point is, pairwise. This "relation" function can be anything from pixel intensity to radial
Euclidean distance.

Chapter 8

177

 f Adjacency/Affinity matrix (A): This also is a k X k transformation, but this time a
transformation of S by applying the k-nearest neighbor filter to build a representation
of the graph (or, for a fully-connected graph, A = S). This matrix is critical to
our calculations.

 f Diagonal degree matrix (D): This is also k X k, formed by summing the degree of
each vertex and placing it on the diagonal.

 f Normalized and symmetric Laplacian matrix (L): This is formed in an operation with
A and D. This is the matrix that we will perform Eigen-decompositions on.

 f Matrix of eigenvectors of L (U): Using eigenvectors, we'll perform K-means clustering
on their components.

Now that we have all the symbols defined, we can describe the K-means algorithm a little
better. The steps involved are as follows:

 f Preprocessing data

 f Constructing adjacency matrix

 f Constructing diagonal degree matrix

 f Constructing normalized Laplacian

 f Performing Eigen-decomposition

 f Performing K-means clustering

The pre-processing phase is done by constructing the similarity matrix S using a relation
function from the raw data matrix R. The relation function describes the edge between two
dimensional nodes in terms of a graph. By using S, we construct the adjacency matrix that
describes the links between vertices represented by the similarity matrix. Again, do not forget
that in this case, the matrix is formed by 0 and 1, and that matrix A is equal to S in the case
where each node of the graph is connected to all the other ones.

Once you have built the adjacency matrix, it is time to construct the diagonal degree matrix.
This step is probably the most straightforward: simply sum up the degrees of each vertex, and
place the value along the diagonal. We need to remember that the degree of a node/vertex on
a matrix is the number of edges it has.

Up to now, starting from R, we have built in sequence S, A, and D, and now we build another
Laplacian matrix using the linear algebra definition that states:

1L A D
D

=

Performing eigenvalues' decomposition starting from L is the next step. We build up a new
matrix U where the columns are the eigenvectors of the matrix L. Mathematics has proved
that this matrix can always be constructed.

K-means Clustering

178

We are now ready to perform a K-means cluster analysis; this is done by using the rows of the
U matrix to construct a new matrix that affects the previous one.

This is a more complicated example, but in any case, it can be used as a demonstration of
a real-world data mining task for text clustering.

We start with the reuters dataset, but the Getting ready section can be ported without a
major effort for any kind of text document.

See also
 f Refer to http://www.win-vector.com/blog/ for more information on some of

the most interesting uses

9
Soft Computing

with Mahout

We will cover the following recipes in this chapter:

 f Frequent Pattern Mining with Mahout

 f Creating metrics for Frequent Pattern Mining

 f Using Frequent Pattern Mining from Java code

 f Using LDA for creating topics

Introduction
After the previous long run on clustering algorithm, we now move on algorithm and devote our
discussions to data-mining and rule extraction purposes. Let's get straight to work!

Frequent Pattern Mining with Mahout
One of the first presented cases to demonstrate the data mining value was introduced back
in the 70s, in trying to extract the rules for presenting items to sell based on the knowledge
acquired from previous buying patterns.

So in this recipe, we will detail a full example on how to extract rules in order to find the
pattern of customers buying items.

Let us start as usual by preparing our working environment.

Soft Computing with Mahout

180

Getting ready
As usual, the starting point for our analysis is to get a dataset. Let us open up a terminal
window and type in the following commands:

export WORK_DIR=/mnt/fpm

mkdir –p $WORK_DIR

cd $WORK_DIR

wget http://fimi.ua.ac.be/data/retail.dat

The file that we get is shown in the following screenshot:

The file can be interpreted in the following way. The first row is a set of 30 items for sale. Every
other row is a single transaction (that is, a bill) asserting how many of these items have been
bought in that single transaction.

So, for example, the first row states that the buyer has to buy 30 pieces of item 0, 31 of
item 1, and so on.

The input can be used just as it is, but other input formats should be managed and arranged
before being mined by Mahout.

Chapter 9

181

How to do it…
We basically need to launch the Frequent Pattern Mining algorithm on this dataset to create
an output sequence file.

The command line in this case is a simple one, so type the following command into an
open console:

mahout fpg -i $WORK_DIR/retail.dat -o patterns -k 50 -method mapreduce
-regex ['\ '] -s 2

The computational task output will be something like the following screenshot:

The result is a sequence file called with the suffix patterns. To see the content, you should
type a command like the following:

mahout seqdumper -i $WORK_DIR/patterns –o patterns.txt

Soft Computing with Mahout

182

A portion of the output file will look like the following screenshot:

How it works…
The algorithm for Frequent Pattern Mining basically works with only one step if we use it
from the command line. We have an input file (retail.dat) that is parsed line by line by
explicitly declaring the separators between the different values. A list of useful command-line
parameters is as follows:

 f -i: This is the input folder containing the input files

 f -o: This is the output folder

 f -k: This is the maximum number of items to mine (the default is 50)

 f -regex: This is the regular expression to split every line

 f -method: This tells us to use the sequential or MapReduce implementation

 f -s: This is the minimum number of times a transaction should be present

As we discussed earlier, the input file should have a predefined format, that is, every line is a
transaction that contains a number of the items contained in a single transaction.

So for example, if we talk about a store selling items, we have a total number of items N and a
number of transactions M. A line of the input file will be as follows:

0,1,0,3,4

Chapter 9

183

For item 1, we have 0 total occurrences in the transaction, that is, we did not buy it. We buy
one item 2 and three occurrences of item 4, and so on. If we buy a single occurrence of every
item, we should have one line, all composed with the number one.

So every line is a transaction and each transaction is formatted as a list of numbers indicating
the number of items purchased and their positions indicating the specific item.

The algorithm that is basically the implementation is presented in the paper
http://infolab.stanford.edu/~echang/recsys08-69.pdf. The algorithm works
by using a divide and conquer strategy. In the first part, it creates a list of frequency items
ordered by their frequency in descending order, so from the most frequent item present in all
transactions to the one that is least present. The second part is the recursive construction
of the so-called Frequent Pattern Tree or FP-tree. The FP-tree is a particular type of graph
structure where we have a principal node (sometimes called the root node) and all the other
nodes are edged with this principal one. We will detail FP-Tree's behavior better in the How it
works... section.

The file obtained by running the algorithm using the MapReduce implementation provides
a folder named patterns contained inside the files shown in the following screenshot:

The results are described as follows:

 f fList: These are sequence files that contain the occurrence of the item for every item
inside the transaction database

 f part-*: These files inside the frequentpatterns folder contain a sequence file
whose content we saw in the earlier screenshot

Soft Computing with Mahout

184

Considering the result sequence file, it should be read as follows. Consider the first line, which
in our case is the following:

Key: 0: Value: ([0],26), ([39, 0],14), ([39, 48, 41, 32, 616, 0,
1314],2), ([39, 41, 0,])

It describes the number of associations found between item 0 and others within the whole
transaction database. So ([0],26) means that the item 0 appears in 26 transactions. The
([39,0],14) confirms that the item 0 coupled with the item 39 appears in 14 transactions,
and so on.

Obviously, without any metrics to understand the correlations between the data, the output
does not have much meaning. In the next recipes, we will see some common metrics to help
us understand all the results.

Creating metrics for Frequent Pattern Mining
We will code a full set of metrics to evaluate a Frequent Pattern Mining file.

Getting ready
To prepare our recipe, we only need the two files that were generated by the previous
Frequent Pattern Mining run as the input. The files are as follows:

 f The sequence file fList that associates the number of transactions to a
key/value format

 f All the files contained in the frequentpatterns folder

The resulting sequence files could be split into many files. So before proceeding, we need to
merge all of them into one.

The result could be split into more sequence files depending on the initial size of the
transaction dataset; hence, we need to merge them. This is not the case here, so we will
simply use both the generated files. If you need to merge files into the Hadoop filesystem, use
the following console command:

hadoop fs -getmerge patterns/frequentpatterns destination.seq

Chapter 9

185

We also need to create the skeleton with Maven and a class called
FrequentPatternMetrics that can be used for general purposes. The final NetBeans
Maven project structure should look like the following screenshot:

How to do it…
We are now ready to code a general purpose class that can be used to evaluate the output of
the file created by the Mahout Frequent Pattern Mining. The full code of the main method can
be seen in the following code:

 public static void main(String[] argv) throws IOException
 {
 FrequentPatternMetrics fpm = new FrequentPatternMetrics();

 fpm.set_FREQUENCY_ITEM_LIST("/mnt/fpm/patterns/fList");
 fpm.set_FREQUENCY_ITEM_PATTERNS("/mnt/fpm/patterns/
frequentpatterns/");
 fpm.readFrequency();
 fpm.readFrequentPatterns();
 fpm.OutputPatterns()
 }

For the full code, we refer the reader to the book's code. A simple run will give the
following output:

[item 0] => item 456 : supp=0.045, conf=0.324, lift=0.002,
conviction=1.701

This means people who buy item 0 are usually willing to buy item 456, and so on.

Soft Computing with Mahout

186

How it works…
Prior to proceeding with our code, we need to provide some background math for the metrics
used to obtain our result. The search for meaningful metrics for Frequent Pattern Mining
is still an object of research as we do not have an optimal metric for every case (See, for
example, http://www.textedu.ru/tw_files2/urls_6/147/d-146938/7z-docs/5.
pdf for a good survey) However, a standard set of metrics to evaluate the association
between patterns has a good research history, so they can be used as a first port of call to find
association rules. Let us define some of these standard metrics.

From now on, let X be a general set of items, N the total number of transactions, then we can
define the following:

SUPPORT(X) is the proportion of transactions containing the set X. This is defined by the
following math formula:

() MSUPPORT X
N

=

Here, M is the number of transactions containing the set X.

CONFIDENCE(X, Y) is the proportion of transactions containing X and Y, so referring to the
previous SUPPORT equation, we can define it as:

() ()
()

,
SUPPORT X Y

CONFIDENCE X Y
SUPPORT X

∪
=

These are very basic metrics but moving on, we have two more interesting ones in particular:

LIFT(X,Y) is formulated as:

() ()
() ()

,
SUPPORT X Y

LIFT X Y
SUPPORT X SUPPORT Y

∪
=

⋅

The formula is slightly different from the CONFIDENCE one because in the second case, we
hypothesize the fact that a transaction that contains X is independent of the fact that the
same transaction contains Y.

Last, we have the CONVINCTION equation that is the ratio of the expected frequency that X
occurs without Y.

Chapter 9

187

To code our class, we choose, according to the standard Java OOP, to code some properties
that will be used within the whole code to undertake standard operations. The properties
themselves are as follows:

String FREQUENCY_ITEM_LIST = "";
String FREQUENCY_ITEM_PATTERNS = "";
Configuration configuration;
FileSystem fs;
Reader rd;
private static final Logger log = LoggerFactory.getLogger(FrequentPatt
ernMetrics.class);
int transactionCount;
double minSupport;
double minConfidence;
Map<Integer, Long> frequency;

So we have the full path name to the frequency files containing the frequency of every item
and the patterns file output by the Mahout FPM algorithm. We also use a Hadoop reader
as we need to read these files. However, the most interesting parts are the minSupport and
minConfidence intervals that describe the minimum level for the support value and the
confidence value. This is to help us decide which associations are meaningful for our analysis.

Our class steps are as follows:

 f Read the frequency items file

 f Read the frequency patterns file and compute the support and confidence values for
the set of items involved in the transaction, for every single transaction

 f Output the results according to the minSupport and minConfidence intervals

Every time we need an ArrayList, Map, Hashmap, or any other structure to handle data,
we decide to declare it as an internal private property, nonaccessible from outside the class
itself. We initialize every internal property under the constructor of the class itself to avoid
a possible null pointer exception as shown in the following code. The constructor is pretty
self-explanatory:

public FrequentPatternMetrics()
{
 FREQUENCY_ITEM_LIST = "";
 FREQUENCY_ITEM_PATTERNS = "";
 configuration = new Configuration();
 int transactionCount = 0;
 int minSupport = 0;
 int minConfidence = 0 ;
 frequency = new HashMap<Integer, Long>();
}

Soft Computing with Mahout

188

Then we code an Init method to set values on everything that we need for our computation:

public void Init() throws IOException
{
 log.info("init process");
 fs = FileSystem.get(configuration);
 FREQUENCY_ITEM_LIST = "/mnt/fpm/patterns/fList";
 FREQUENCY_ITEM_PATTERNS = "/mnt/fpm/patterns/frequentpatterns/";
 GetTransactionCount();
 minSupport = 0.04;
 minConfidence = 0.4;
}

In the Init() method, we also called the GetTransactionCount method that basically
initializes the transactionCount property that will be needed in the rest of the code; again
the method is pretty easy:

private void GetTransactionCount() throws IOException
{
 LineNumberReader reader = new LineNumberReader(new FileReader("/
mnt/fpm/retail.dat"));
 String lineRead = "";
 while ((lineRead = reader.readLine()) != null) {}
 transactionCount = reader.getLineNumber();
 reader.close();
}

Things have now become more interesting; first we need to load the frequency from HDFS for
every item using sequence files methods. So we code the following method:

private void ReadFrequencies() throws IOException {
 rd = new SequenceFile.Reader(fs, new Path(FREQUENCY_ITEM_LIST),
this.configuration);
 Text key = new Text();
 LongWritable value = new LongWritable();
 while(rd.next(key, value)) {
 log.info("find key " + key.toString() + " with value : " + value.
get());
 frequency.put(Integer.parseInt(key.toString()), value.get());
 }
}

Chapter 9

189

Then we need to compute the frequent patterns:

private void readFrequentPatterns() throws IOException {
 rd = new SequenceFile.Reader(fs,new Path(this.FREQUENCY_ITEM_
PATTERNS), configuration);
 Text key = new Text();
 TopKStringPatterns value = new TopKStringPatterns();
 while(rd.next(key, value)) {
 long firstFrequencyItem = -1;
 String firstItemId = null;
 List<Pair<List<String>,Long>> patterns = value.getPatterns();
 int i = 0;
 for(Pair<List<String>,Long> pair: patterns) {
 List itemList = pair.getFirst();
 Long occurrence = pair.getSecond();
 if (i == 0) {
 firstFrequencyItem = occurrence;
 firstItemId = itemList.get(0).toString();
 } else {
 double support = (double)occurrence / transactionCount;
 double confidence = (double)occurrence / firstFrequencyItem;
 List listWithoutFirstItem = new ArrayList();
 for(Object itemId: itemList) {
 if (!itemId.equals(firstItemId)) {
 listWithoutFirstItem.add(itemId);
 }
 }
 long otherItemOccurrence = frequency.get(0);
 double lift = (double)occurrence / (firstFrequencyItem *
otherItemOccurrence);
 double conviction = (1.0 - (double)otherItemOccurrence /
transactionCount) / (1.0 - confidence);
 i++;
 }
 }
 rd.close();
}

This is so that at the end, we have the listWithoutFirstItem object of type ArrayList
containing the frequent patterns.

Soft Computing with Mahout

190

Using Frequent Pattern Mining from
Java code

In this recipe, we will give a full working example using the Frequent Pattern Mining
Mahout-cabled algorithms for performing a retail rule extraction.

Getting ready
As usual, we set a working folder and download a test dataset that we will use during the
recipe. To create the working folder, we give the following commands:

export WORK_DIR=/mnt/fpmjava

mkdir –p $WORK_DIR

cd $WORK_DIR

Now we download a dataset of transactions from a grocery store provided by professor Marina
Marski on her website http://csci.viu.ca/~barskym/. To download the file type into a
bash shell, use the following command:

wget http://csci.viu.ca/~barskym/teaching/DM_LABS/LAB_7/data.zip

Once unzipped, you should find a file called marketbasket.csv.

The structure of the CSV file is as shown in the following screenshot:

The first row enumerates all the items sold by the grocery store. Then every row represents
a transaction. In the preceding screenshot, you can see that the eighth bill has one fat-free
hamburger, and so on.

Chapter 9

191

The whole dataset has 1361 transactions that we will analyze using the Frequent Pattern
Mining algorithm.

Before proceeding, we will add a new class called FrequentMiningPatternJava inside
the previously created Maven project. Thus, we have the following folder structure:

Lets now move on to the coding part.

How to do it…
Essentially, we recode the previous chapter's recipe, but in this case we also add a few data
transformations. Our class essentially performs the following steps:

1. Read all the items' descriptions.

2. Read all the transactions and compute a list.

3. Run the Frequent Pattern Mining algorithm.

4. Output the results.

So let us start with the first easy method that reads the first line of our marketbasket.csv
file and load it into an ArrayList called items of string objects to get all the item names.
The code is pretty simple as we will see next:

private void readItemsName() {
 if (items != null)
 items.clear();
 log.info("adding items name");
 BufferedReader br = null;
 String line = "";
 String cvsSplitBy = ",";
 items = new ArrayList<String>();
 try {
 br = new BufferedReader(new FileReader(cvsFileName));
 line = br.readLine();
 String[] itemss = line.split(",");
 for(int i=0;i<itemss.length;i++)
 {

Soft Computing with Mahout

192

 log.info("adding item " + itemss[i]);
 System.out.println("adding item " + itemss[i]);
 items.add(itemss[i]);
 }
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 } finally {
 if (br != null) {
 try {
 br.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }

}

We need to load every transaction into a Map object, also detailing the items involved in
the single transaction; this will create an Arraylist of objects called transaction.
The following code details the process:

private void readTransactions()
{
 if (transactions != null) transactions.clear();
 log.info("adding transactions");
 BufferedReader br = null;
 String line = "";

 try {
 br = new BufferedReader(new FileReader(cvsFileName));
 line = br.readLine();
 while ((line = br.readLine()) != null) {
 // use comma as separator
 String[] itemsintransaction = line.split(",");
 ArrayList<String> ar = new
ArrayList<String>();
 for (int i = 0; i < itemsintransaction.
length; i++)
 {
 if (Integer.
parseInt(itemsintransaction[i]) > 0)
 {

Chapter 9

193

 ar.add(items.get(i));
 }
 }
 if (ar.size() > 0)
 {
 log.info("adding a transaction of " +
ar.toString());
 transactions.add(new Pair(ar,1L));
 }
 }
 } catch (FileNotFoundException e) {
 log.error(e.getMessage());
 } catch (IOException e) {
 log.error(e.getMessage());
 } finally {
 if (br != null) {
 try {
 br.close();
 } catch (IOException e) {
 log.error(e.getMessage());
 }
 }
 }
}

As you must have noticed, basically, we parse line by line (except the first one) from the
marketbasket.csv file that contains the transactions. In this case, considering that the
full item list is always fully initialized, we split every line into an array of string containing zeros
and ones. Then we looped this array and every time we found a quantity, it means that in the
transaction, if the item in position i has been bought, we add it to our transactions. Then we
add the resulting transaction to our transactions object by specifying a default minSupport
value for every transaction, that is, 1L. You should have noticed that some transactions do not
involve any item of the grocery, so insert only valid transactions within the code:

if (ar.size() > 0)
{
 log.info("adding a transaction of " + ar.toString());
 transactions.add(new Pair(ar,1L));
}

Soft Computing with Mahout

194

Using the slf4j logging library, we also provide some logging to let the users see the
soundness of the transactions loaded during computation. We can see something like
the following screenshot:

Just to see that everything is correct, we computed the frequencies and output them using the
logging framework:

private void findFrequencies() {
 frequencies = fps.generateFList(transactions.iterator(), (int)
minSupport);
 for (Pair<String, Long> frequency : frequencies)
 {
 log.info("frequency of item : " + frequency.toString() + " up to "
+ transactions.size());
 }
}

The result should flow on the output console, as shown in the following screenshot:

Chapter 9

195

Then we need to set up two objects required for the MapReduce implementation to work, the
updater and the output objects respectively. To ensure the code is as compact as possible,
we implement all the methods required for the two objects.

The updater is a StatusUpdater object, so only the update method has been overridden to
provide some logging info. The whole initialization part is handled by the initUpdater method.

private void initUpdater()
{
 updater = new StatusUpdater() {
 public void update(String status) {
 log.info("updater :" + status);
 }
 };
}

More interesting is the implementation of the output object that is done in the
createOutput() method.

private void createOutput() {
 output = new OutputCollector<String, List<Pair<List<String>,
Long>>>() {

 @Override
 public void collect(String x1, List<Pair<List<String>, Long>>
listPair) throws IOException {
 StringBuffer sb = new StringBuffer();
 sb.append(x1 + ":");
 for (Pair<List<String>, Long> pair : listPair) {
 sb.append("[");
 String sep = "";
 for (String item : pair.getFirst()) {
 sb.append(item + sep);
 sep = ", ";
 }
 sb.append("]:" + pair.getSecond());
 }
 log.info("createOutput: " + sb.toString());
 }
 };
}

Soft Computing with Mahout

196

This method basically only overrides the collect method to output some information. As a
result, during computation of the output object, the collect method will output some info
like the output shown in the following screenshot:

Finally, we come to the interesting part of the algorithm itself, calling the Frequent Pattern
Mining algorithm. The code that does the whole elaboration is only one single line:

fps.generateTopKFrequentPatterns(
 transactions.iterator(),
 frequencies,
 minSupport,
 k,
 null,
 output,
 updater);

As we can see, all the values set or initialized are used as parameters.

In this case, we did not store the output on a Map object to save it as a sequence file. To do
this, we need to change the implementations on the output.collect method. One possible
change could be the following:

@Override
 public void collect(String key, List<Pair<List<String>,Long>>
value) {
 for (Pair<List<String>,Long> v : value) {
 List<String> l = v.getFirst();
 results.put(Sets.newHashSet(l), v.getSecond());
 }
 }

The result is declared as follows:

Map<Set<String>,Long> results = Maps.newHashMap();

As a last word, we have only detailed a little bit better how the Frequent Pattern Mining
algorithm works.

Chapter 9

197

The core of the algorithm is a data structure called Frequent Pattern Tree (FP-tree), that in
the language of mathematics is an undirected simple graph that is connected and any two
vertices are always connected with a simple path. The FP-tree is represented as follows:

Starting from the initial dataset, we create a tree where every node represents an item and
the edges between nodes represent the fact that if item i is present in one transaction with
item j, then there is an edge between i and j connecting them.

The FP-tree is also characterized by the following properties: the root node is the one that is
null and every other node is described by the following three fields:

 f Item name: This is the name of the items

 f Count: This is the number of items connected

 f Link: This will be 1 if the next node contains the same item name and 0 otherwise

The whole algorithm works with the FP-Tree in a two-stage operation:

 f Building the FP-tree

 f Growing the tree to find association rules

The procedure for growing the tree is: scan the FP-tree, and for every i node consider that the
subtree having the i node as the root node and generate another pattern by adding a new
node whose fields are defined using the minSupport input value. So the algorithm chooses
the item (node) i and considers all the other nodes that are connected, that is, have common
transactions with item i. For a full reference of the method, we cite the seminal paper by
Jiawen Han available at http://www.cs.uiuc.edu/~hanj/pdf/dami04_fptree.pdf.

Obviously, we did not let MapReduce enter the theory right now. Only for reference, we cite the
following: https://blog.antecons.net/2012/11/11/mapreduce-and-frequent-
patterns/.

Soft Computing with Mahout

198

Using LDA for creating topics
In this recipe, we will code a full command-line example of topic extraction from text using the
LDA (Latent Dirichlet Allocation) algorithm.

The LDA algorithm was first used to extract topics from documents but can be generalized to
find new unobserved topics from observed data.

Getting ready
To get started, we need (as usual) a dataset for testing purposes. In this case, we will use the
usual Reuters e-mail dataset. The steps involved prior to applying the LDA learning algorithm
are as follows:

1. Convert the whole dataset into the SequenceFile format.

2. Create weighted vectors from the sequence file.

Let us start by downloading the Reuters archive for our analysis. So open up a terminal
window and type in the following command:

export WORK_DIR=/mnt/new/lda

mkdir $WORK_DIR

mkdir $WORK_DIR/input

mkdir $WORK_DIR/sequencefiles

mkdir $WORK_DIR/vectors

mkdir $WORK_DIR/ouput

mkdir $WORK_DIR/reutersfinal

cd $WORK_DIR

So, we have the folder structure shown in the following screenshot:

Chapter 9

199

Now we need to download and decompress the Reuters archive. To do this, in your
$WORK_DIR folder, type in the following command:

wget http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.tar.gz

tar xvzf reuters21578.tar.gz -C $WORK_DIR/input

Now the folder should appear as shown in the following screenshot, where the whole Reuters
dataset is extracted into the input folder:

We are now ready to conduct our analysis with some preprocessing tasks.

How to do it…
Prior to proceeding with the LDA algorithm, we need to do three major preprocessing tasks:

1. Creating a sequence file from the documents.

2. Constructing the vectors for the weights.

3. Applying the LDA algorithm.

So prior to proceeding from the $WORK_DIR folder, type the following command:

mahout org.apache.lucene.benchmark.utils.ExtractReuters $WORK_DIR/input
$WORK_DIR/reutersfinal

Soft Computing with Mahout

200

This utility will extract the Reuters e-mail in a text file format . We use the ExtractReuters
class object specifically created for this purpose. The content of a single file is something like
the following screenshot:

Now that we are ready, we could proceed by creating the sequencefiles from this text file.
The seqdirectory command to be used is:

mahout seqdirectory -i $WORK_DIR/reutersfinal -o $WORK_DIR/sequencefiles/
-c UTF-8 -chunk 5

This will create the sequence file inside the new folder, sequencefiles. To see the file
content and how it is organized, we need to type the following command:

mahout seqdumper -i ./part-m-00000 -o part-m-00000.txt

The result is something like:

Input Path: part-m-00000

Key class: class org.apache.hadoop.io.Text Value Class: class org.apache.
hadoop.io.Text

Key: /reut2-000.sgm-301.txt: Value: 2-MAR-1987 04:45:57.78

Key: /reut2-012.sgm-635.txt: Value: 2-APR-1987 12:14:08.24

Then, from this sequence file, we need to calculate the weight as we did in Chapter 5, Stock
Market Forecasting with Mahout, to have the sequence file vector's point ready to be analyzed
by the LDA. So our last preprocessing step gives the following commands:

mahout seq2sparse -i $WORK_DIR/sequencefiles/ -o $WORK_DIR/vectors/ -wt
tf

mahout seq2sparse -i $WORK_DIR/sequencefiles/ -o $WORK_DIR/vectors/ -wt
tf

Chapter 9

201

Now that we have the sparse vectors sequence inside the vectors folder, as shown in the
following screenshot, we can move on with the core algorithm.

Now we are ready to give our analysis command, which is as follows:

mahout cvb -i $WORK_DIR/reuters-out-matrix/matrix -o $WORK_DIR/reuters-
lda -k 20 -ow -x 20 -dict $WORK_DIR/reuters-out-seqdir-sparse-lda/
dictionary.file-* -dt $WORK_DIR/reuters-lda-topics -mt $WORK_DIR/
reuters-lda-model

The output will result in the folder named $WORK_DIR/reuters-lda as a sequence file object.

It is now time to understand what we have done.

Soft Computing with Mahout

202

How it works...
Prior to proceeding with how the Mahout Latent Dirichelet Algorithm works, we need to first
let readers know that apart from being based on the MapReduce paradigm, the Mahout LDA
implementation has been deprecated in favor of the Collapse Variation Bayes LDA algorithm.
So in the actual version, we have used this implementation. However, we first need to explain
generally how the base algorithm works prior to moving to the Mahout implementation. The
algorithm best fits for text analysis and information retrieval considering that when it was
first presented in the journal Machine Learning, it was applied to extract topics from a known
corpus of documents. So let us start with the simple version of LDA.

Suppose you have a set of documents and a fixed number of topics to discover, and you would
like to learn the topics of each document and the number of words belonging to each topic.

The steps for the algorithm are as follows:

1. First go through every document and for every word, assign it to a random
chosen topic.

2. This first rough classification will give us the requested number of topics even
if it is totally random.

To improve this mapping, we proceed as follows:

1. For each word w in a document D, compute two quantities: the proportion of
words in the document that are currently assigned to topic t and the proportion of
assignments to topic t over all documents that come from this word w.

2. Reassign the word w to a new topic t2 with probability that the new topic t2
generates word w. So it makes sense to reassign it.

3. Repeat the previous steps until some limit has been reached or until a maximum
error level is reached.

All these steps involve the use of a dictionary to find the appropriate words and to evaluate
the frequency. This is why we need to do the analysis prior to creating the dictionary using the
sparse2seq command.

Mahout implements a modified version of the LDA algorithm, the Collapsed Variation Bayes
LDA. The original paper can be found at http://machinelearning.wustl.edu/
mlpapers/paper_files/NIPS2006_511.pdf.

The power of the algorithm relies on the fact that the computational part can be approximated
in a good way. As the name suggests, the algorithm uses the Bayesian inference to estimate
the probability of a word to be associated with a topic.

Chapter 9

203

The main computational tasks are performed using the following command line.

mahout cvb -i $WORK_DIR/reuters-out-matrix/matrix -o $WORK_DIR/reuters-
lda -k 20 -ow -x 20 -dict $WORK_DIR/reuters-out-seqdir-sparse-lda/
dictionary.file-* -dt $WORK_DIR/reuters-lda-topics -mt $WORK_DIR/
reuters-lda-model

The command-line parameter needs a more detailed description:

 f The input folder is where the input job relies

 f The output folder is where the sequence file will be created

 f The K parameter is the number of topics to generate

 f The X parameter is the maximum number of words to aggregate into a topic

 f The –ow directive instructs to remove the final output if it exists

 f The –dict tells you where the dictionary is located (the output folder)

 f The –dt is the output path for the document training

 f The –mt is the model topic folder

Once the computation is completed, to see the results, you can use the ldatopics tool
provided by Mahout. The command is pretty easy:

mahout ldatopics \

 -i <input vectors directory> \

 -d <input dictionary file> \

Obviously in this example, we mimic the LDA on text mining. The algorithm works well both with
structured and unstructured text, and it has been successfully used in other prediction tasks.
We suggest the reader takes a look at the Scirus website to see the field of applications.

We also suggest the reader tries different topics and number of words per topic to evaluate
which is the best solution.

10
Implementing the
Genetic Algorithm

in Mahout

In this last chapter we will deal with a very well-known type of algorithm called the genetic
algorithm, also referred to as GA. It can extract information from a dataset using algorithms
that mimic the natural world.

In particular, we will see the following recipes:

 f Setting up Mahout for using GA

 f Using the genetic algorithm over graphs

 f Using the genetic algorithm from Java code

Introduction
In this chapter, we will cover the examples contained in a previous Mahout version and not
the one that we use in the whole book. The reason is mostly pedagogical as we want to show
the possibilities offered by Mahout's evolutionary algorithm framework. So we will review in
a deeper manner the examples that are contained and are available to the reader through
Apache License.

Implementing the Genetic Algorithm in Mahout

206

Setting up Mahout for using GA
Before proceeding, you should know that for this recipe, we are going to use an older version
of the evolutionary algorithm. The first MapReduce implementation of genetic algorithm in
Mahout was done using an external framework. But in the current version of Mahout Version
0.8—the one we have used throughout the whole book—this support has been withdrawn.

To do this, we need to reset the development environment to let the reader use this kind of
algorithm. This first recipe is divided into two steps:

 f Downloading the correct revision of the Mahout developing environment

 f Compiling and testing it

For compatibility with what has been done until now, we will use NetBeans, even if it is
possible to use git and maven from the command line.

Getting ready
To start, first of all, fire up NetBeans, then go to the menu and choose Team | git | clone and
enter the following details in the form:

It is strongly suggested to register at GitHub (www.github.com),
as this is the official supported versioning system for the Apache
Mahout framework.

Chapter 10

207

Select the Mahout version you want to use; in this case, it is 1.0—the latest one that supports
the GA implementation:

Then in the window that appears, enter the local folder where you want to clone the remote
repository; in our case, enter mahout0.1 to distinguish it from the current Mahout folder we
used in Chapter 1, Mahout is Not So Difficult!, for Version 0.8 of Mahout.

Implementing the Genetic Algorithm in Mahout

208

By clicking on the Finish button, after a while the output window should display the
following lines:

We will now proceed with the compilation part.

How to do it…
1. In the cloning local folder, we have the Maven main pom.xml file that can

be compiled. To compile it from the command line, just open up a terminal
console and move to the cloning folder (in our case /home/Hadoop-Mahout/
NetBeansProjects/mahout1.0/mahout1.0) and type the following command:
mvn install -Dmaven.test.skip=true

2. This will output the following lines:

Chapter 10

209

3. If you want NetBeans to compile and create all the JAR files required, you should go
to the Main menu and choose File | Open Project, locate the folder used to clone
the project and then click on the Open project button as follows:

4. Once opened, the project can be compiled by right-clicking the mouse button
and by choosing the Clean and Build menu item as follows:

Implementing the Genetic Algorithm in Mahout

210

After finishing here, we have a fully functional Mahout 0.1 release that also contains the
GA examples.

One last word: the careful reader should have noticed that in
the command line we skipped the testing phase, but while
using NetBeans we do the testing. Obviously, if you want to
avoid full testing, it can be done. For reference, see http://
stackoverflow.com/questions/6074752/in-
netbeans-7-how-do-i-skip-testing-and-add-
maven-additional-parameters-when-bui.

Using the genetic algorithm over graphs
In this section, we will use GA to solve the famous Traveling Salesman Problem (TSP).
Imagine, you are a traveling salesman that has to visit some cities that are connected by
street. A generic city can be connected to the remaining with different streets. Traveling from
one city to the other has a cost depending on the street you choose. The TSP tries to find
the cheapest route to visit all of the cities. The problem can be restated for every graph, for
example, the routers network and the link between sites.

Getting ready
Basically, we have everything set up by the previous recipe, but as in this recipe we will use
the command-line utility, we need to be sure that the $MAHOUT_HOME environment variable is
configured to point to the right folder. So prior to proceeding, we need to launch the command
line and give the following command:

export $MAHOUT_HOME=/home/Hadoop-Mahout/NetBeansProjects/mahout1.0/
mahout1.0

You should accordingly change it to the folder where you saved the git distribution.

How to do it…
To test the implementation of GA for the TSP, we need to be on the same terminal console
where we set up the $MAHOUT_HOME environment variable. Perform the following steps:

1. Type in the following command:
cd $MAHOUT_HOME

mahout org.apache.mahout.ga.watchmaker.travellingsalesman.
TravellingSalesman

Chapter 10

211

The following window should appear:

2. Now to proceed, click on the Select All button, and the form should look like the
following screenshot:

Implementing the Genetic Algorithm in Mahout

212

3. Now click on the Start button and after a while, in the Results panel, something like
the following screenshot should appear:

We are now ready to understand what happened.

How it works...
TSP is a very well-known problem in the graph theory, which was first defined as we know
it by Hamilton during the first decade of the nineteenth century. The problem spans from
Mathematics to the Complexity theory and Computer Science. Even now, its popularity is
constantly increasing as it deals with the best way to walk through a graph. The problem was
shown to an NP-hard, meaning that there is no existing algorithm to solve it in a polynomial
time. This means that if we have n cities, it takes k time to find a solution; with n+1 cities, the
time to find a solution is greater than k+1.

Mathematically speaking, let us start with an undirected weighted graph, which means a
graph composed of vertices and edges. The edge between node x and y is tagged with a
number representing the cost from going from node x to node y. In the classical case, we can
think of the nodes as cities and the edges as the mean cost of the flight from one city to the
other. Given a set of cities, the TSP consists on finding the least costly flight path that exists
between the cities in the whole set.

Recall the mathematical theory behind the claim that giving an undirected weighted graph
with m nodes not directly connected. What is the path between the nodes that minimize the
value of the sum of all the edges?

Chapter 10

213

Considering the formulation, the simplest way to solve this problem by a computer is the brute
force algorithm that consists of the following computational steps:

 f First find all available path from node x to node y

 f For every path, compute the total cost path

 f Find the minimum of this set

The brute force approach also gives the exact solution, but the really big problem is that while
it is relatively easy to compute the last two steps, the first one is computationally expensive.
Consider that in a graph we have n nodes, the possible number of paths could scale up to
n!, where n! = n(n-1)(n-2)…2. With only 20 cities, we find that the number of a possible paths
connecting to them could be 20! Believe me, this one number is very, very big. A 30-city tour
would have to measure the total distance of 2.65 X 1032 different tours. Assuming a trillion
additions per second, this would take 252,333,390,232,297 years. Adding one more city
would cause the time to increase by a factor of 31. Obviously, this is an impossible solution.

In our recipe, we use some EU capitals as the node for our graph to find the solution to the
TSP. The brute force approach can be set using the Brute Force radio button as follows:

We use only four cities, which is the minimum number allowed to
test whether one can progressively increase the number of cities
to see the computational time increase in non-linear progression.

Implementing the Genetic Algorithm in Mahout

214

Another proposed solution to the TSP algorithm is to use the evolutionary approach. The
concept behind genetic and evolutionary algorithm deals with evolution.

Only for the sake of completeness, the reader could take a look at a Java brute force solution
to the TSP available at http://www.jimscode.ca/index.php/component/content/
article/18-java/22-java-travelling-salesman-via-brute-force.

The algorithm is composed by starting a population. Then a loop is started on the population.
At every step of the loop, a new population is created from the previous one using a random
selection of the genes that compose the previous one. Then, the new population is evaluated
against an objective function to see whether the new population is better than the previous
one. This loops end until a threshold value is raised or after a great amount of iterations. In our
case, we need to detail the population and how it evolves, coupled with the objective function.

So, rewriting the GA implementation using the TSP language, the algorithm implementations
will be formed by the following steps:

1. The population is composed of a set of semi-random generated tours from the
set of cities.

2. Select two of the shortest paths from the initial population; combine them to obtain
two new child tours.

3. The new child tours are inserted into the population replacing two of the longer tours.
The size of the population remains the same.

4. The process is repeated until no increase in the shortness of the child path happens
or until a total number of iterations are reached.

5. The difficult part is the evolution from the parent tours to the child tours by defining
how they combine. We will not go too deep into the details, but the operation involves
a crossover and/or mutation operation between single paths.

The windows we have seen basically allow us to choose the initial set of cities for the
definition of the TSP algorithm. Then, we can choose the initial population of random chosen
tours. Then we can choose respectively:

 f The total number of populations to generate

 f The way we mutate one child tour to the parent one by using mutation or crossover

 f The elitism number—that is the maximum number of individual parents that can
survive in the next generation—is appropriate for the fitting function

Besides, we can decide to use Mahout if we want to use the MapReduce implementation

Chapter 10

215

This is the basic point where Computer Science meets Biology. If we have two organisms that
tend to reproduce themselves, the DNA from the parents is mixed so that the newborn does
not receive only the direct DNA from one of the two parents, but a mixture of them. This is the
crossover action. The mutation is randomly changed in the DNA that affects the newborn, so
that the blind force of mutation can donate to the next generation's organism the ability to be
more adaptable to the new environment with respect to the parents that generate it.

If we translate this to the algorithm, it implies that after every new generation, a mixture of the
path between the two parents' paths are recombined, plus some random changes are added.
This will create a new path that could be more adaptable to minimize the total cost of the
weighted edges between two cities.

For reference, we point the curious reader to the introductory text book Introduction to Genetic
Algorithms, Springer (http://www.springer.com/engineering/computational+int
elligence+and+complexity/book/978-3-540-73189-4).

We invite the reader to try different combinations of the parameter and above all, to test
whether the brute force solution—that is, the correct one—is also best approximated by a
different implementation.

Using the genetic algorithm from Java code
We are now ready to code a more complicated recipe both from the programming part as well as
the theoretical background. Before proceeding, we need to set up our NetBeans environment to
use the Mahout version we downloaded and Maven compiled in the previous recipe.

Getting ready
Let us start by firing up our NetBeans IDE. Then, as we did many times during the book,
create a new quick-start Maven project called chapter10; the final result should be like the
following screenshot:

Now, it is time to connect the Mahout code to get the Mahout release that contains the
implementation.

Implementing the Genetic Algorithm in Mahout

216

From the explorer tab where we just created the new project, right-click on the Dependencies
icon and the from the menu item, choose Add Dependencies, and then complete the form
as follows:

Once you have added the Mahout version, you could clean and build the whole project to
obtain the following as the final result:

Chapter 10

217

For this example, we also need to use a file as a dataset; we need to move the data from its
default location to the new one.

Open up a terminal window and type the following commands:

export $WORK_DIR=/mnt/GA

mkdir $WORK_DIR

cd $WORK_DIR

Now we need to copy the file required for our analysis into this folder to have it ready to be
used. With the correct $MAHOUT_HOME variable set, we need to type the following command:

cp -R $MAHOUT_HOME/examples/src/test/resources/* $WORK_DIR

Two files are copied: the wdbc.infos file, and a wdbc folder that contains the wdbc.data
file. The wdbc.infos file has the following content:

Implementing the Genetic Algorithm in Mahout

218

The wdbc.data file has the following content:

The purpose of this example is to code some classification rules over this dataset. The dataset
itself has been used for classification purpose in Chapter 7, Spectral Clustering in Mahout. We
suggest the reader refers to the recipes there or to the website that describes its attributes
(http://mlearn.ics.uci.edu/databases/breast-cancer-wisconsin/). It is
important to note that the wdbc.infos file that describes the content of every variable to be
discrete or continuous, is not mandatory. So if you are thinking of recoding the example
with another dataset, it is important to create the same file that contains the description of the
columns involved.

We are now ready to move to the coding phase.

How to do it…
1. Open up the default generated App.java class and add the following lines inside

the main method:
String dataset = "target";

int target = 1;
double threshold = 0.9;
int crosspnts = 1;
double mutrate= 0.033;
double mutrange= 0.1;
int mutprec= 0;

Chapter 10

219

int popSize= 100;
int genCount= 10;

Path inpath = new Path(dataset);
CDMahoutEvaluator cdMahoutEvaluator;
CDMahoutEvaluator.initializeDataSet(inpath);

CandidateFactory<CDRule> factory = new CDFactory(threshold);

List<EvolutionaryOperator<CDRule>> operators = new ArrayList<Evolu
tionaryOperator<CDRule>>();
operators.add(new CDCrossover(crosspnts));
operators.add(new CDMutation(mutrate, mutrange, mutprec));
EvolutionPipeline<CDRule> pipeline = new EvolutionPipeline<CDRule>
(operators);

DatasetSplit split = new DatasetSplit(0.75);

FitnessEvaluator<? super CDRule> evaluator = new
CDFitnessEvaluator(dataset, target, split);
SelectionStrategy<? super CDRule> selection = new
RouletteWheelSelection();

EvolutionEngine<CDRule> engine =
new SequentialEvolutionEngine<CDRule>(factory, pipeline,
evaluator, selection, RandomUtils.getRandom());

engine.addEvolutionObserver(new EvolutionObserver<CDRule>() {
@Override
public void populationUpdate(PopulationData<? extends CDRule>
data) {
 log.info("Generation {}", data.getGenerationNumber());
}
});

Rule solution = engine.evolve(popSize, 1, new
GenerationCount(genCount));

Path output = new Path("output");

CDFitness bestTrainFit = CDMahoutEvaluator.evaluate(solution,
target, inpath, output, split);

split.setTraining(false);
CDFitness bestTestFit = CDMahoutEvaluator.evaluate(solution,
target, inpath, output, split);

log.info("Best solution fitness (train set) : {}", bestTrainFit);
log.info("Best solution fitness (test set) : {}", bestTestFit);

Implementing the Genetic Algorithm in Mahout

220

2. Then, resolve all the import issues using NetBeans' online help by pressing
Alt + Enter:

3. Then to run the example, press F6.

How it works...
In this example, we are using an evolutionary algorithm to extract rules of the type:

If <condition1> && <condition2> &&then apply

So basically, what the evolutionary algorithm tries to do is extract these rules from an initially
random generated set of rules, where the objective function is the one that minimizes the
false positive prediction.

To give an example from the seminal paper, consider a dataset that contains various
variables, both discrete as well as numerical. The dataset can be defined as follows:

 f Patient unique identifier

 f attribute1 (numeric)

 f attribute2 (numeric)

 f …

 f attributen (categorical ex male/female)

 f Disease (yes/no)

Chapter 10

221

In this case, an evaluation rule can be the following:

If (
(attribute1 < 100) and (attribute1 >50)
Or
(attribute2 0.7) and (attributen = male)
)
Then
Disease = yes

This rule can be correct for a single line of our dataset, but there could be another line where
the same rule leads to different outcomes as follows:

 f True positive: The rule predicts that the patient has a given disease and the patient
does have that disease

 f False positive: The rule predicts that the patient has a given disease but the patient
does not have it

 f True negative: The rule predicts that the patient does not have a given disease, and
indeed the patient does not have it

 f False negative: The rule predicts that the patient does not have a given disease but
the patient does have it

These are all the possible outcomes for every rule in every line of the dataset. We can therefore
define the number of true positives, false positives, true negatives, and false negatives, and
we indicate them respectively by the number tp, fp, tn, and fn. We can consider the quantities
such as sensitivity (symbol Se) and specificity (Sp) defined respectively as follows:

Without any advanced mathematical skill, you can understand that sensitivity represents the
percentage of correct diagnoses over the subset of all the correct diagnoses.

While on the other hand, specificity is the percentage of correct negative answers (true
negative means that the rules indicate no disease for the patient and the patient has no
disease) over the total incorrect outcomes.

The objective function, in this case, is the product of sensitivity and specificity in formula:

Implementing the Genetic Algorithm in Mahout

222

The problem in terms of the genetic algorithm can be re-stated as follows: given an initial
randomly generated set of rules as with the ones we stated, find the ones that maximize the
fitness function with evolution. So, this maximizes both the percentage of correct outcomes in
case of positive outcomes and the correct outcomes in case of negative outcomes. Thus, the
algorithm follows the following high-level pseudocode:

create initial random set
loop
 evaluate the whole set of rules against the main dataset
 calculate the fitness function
 generate new set of rules
 until fitness < threadshol or maxmimum number of generation reached

In our initial dataset, we have the following column attributes:

 f ID number

 f Diagnosis (M = malignant, B = benign)

 f Radius (mean of distances from center to points on the perimeter)

 f Texture (standard deviation of gray-scale values)

 f Perimeter

 f Area

 f Smoothness (local variation in radius lengths)

 f Compactness (perimeter^2 / area - 1.0)

 f Concavity (severity of concave portions of the contour)

 f Concave points (the number of concave portions of the contour)

 f Symmetry

 f Fractal dimension (coastline approximation - 1)

Our goal is to find a set of rules that we can apply to other values (that is, a new case) to
diagnose whether the patient has a benign or malign tumor mass. In our case, the outcome
should match the B/M switch on the second column.

In the description of the algorithm, we omit that for neural networks.

So, we transform the whole set into two main sets: the training set and the testing one. The
dimension of the training is by default set to 75 percent of the whole set.

To evaluate whether the resulting set of rules is a good one, we evaluate the fitness function
over the training set to see whether the final value is less than the one found over the training
set. We will not enter all the algorithm details, but as we remember, it uses the MapReduce
Hadoop framework. The algorithm itself has been adapted to this particular dataset, so it is not
easily portable to other datasets. Instead, our goal is to provide a general view of the problem
and the Mahout implementations.

Chapter 10

223

The reader should not forget that the implementation of the GA has been integrated into
Mahout, but it is not officially supported.

Let us start with some basic settings. In this case, we only have the initialization of the
Hadoop path environment that is required:

 Path inpath = new Path(dataset);

The dataset variable should be the HDFS filesystem where the wdbc.infos file is placed.
We need to use a specific class created to evaluate the whole dataset and to initialize it:

CDMahoutEvaluator cdMahoutEvaluator;
CDMahoutEvaluator.initializeDataSet(inpath);

Do not forget that coupled with the dataset file is also the wdbc.infos file, which contains
also the descriptions and ranges of the numerical variables involved:

The core part of the Mahout algorithm has been coded using the Watchmaker framework
(http://watchmaker.uncommons.org/). This framework is a high-performance
framework written in Java; the framework provides some ready-to-use key features focused on
genetic algorithm evolutionary strategies.

The key analysis is done using the EvolutionEngine Java class. The class, once
instantiated, can be evolved using its evolve or evolvePopulation methods. To correctly
use the evolution engine, you need to provide the correct rule and above all, the fitness
function, which is the core part of the algorithm. This is the basics of how the algorithm works,
but obviously in the Hadoop context, an implementation was done.

Implementing the Genetic Algorithm in Mahout

224

So prior to using the evolutionary schema, we create a candidate factory, which has the initial
population and as a result, has a generic list of the CDRule objects:

 CandidateFactory<CDRule> factory = new CDFactory(threshold);

CDRule is another object that is the logical mapping of the rule on the form:

if (condition1 && condition2 && ...) then
 * class = 1
 * else
 * class = 0

The rules are evaluated using the following restrictions:

 f For numerical attributes, the available operators are < and >=

 f For categorical attributes, the available operators are != and ==

So, we have the first ingredient, that is, the population of rules to be evolved. Next, we told the
engine which evolutionary operators were available for this population:

List<EvolutionaryOperator<CDRule>> operators = new ArrayList<Evolution
aryOperator<CDRule>>();

operators.add(new CDCrossover(crosspnts));
operators.add(new CDMutation(mutrate, mutrange, mutprec));

EvolutionPipeline<CDRule> pipeline = new EvolutionPipeline<CDRule>(op
erators);

Note that in this case, we use the CDCrossover and CDMutation operators—both of these
objects implemented from the Mahout framework basically use the input parameter to define
how the mutation from the two parent rules generate the new child rules.

A coder could also decide to implement his/her own operator. Considering that in the Mahout
framework, both the CDCrossover and CDMutation operators are implemented from the
Watchmaker framework abstract class AbstractCrossover.

Just for the matter of clarity, the CDCrossover operator uses the following method:

 static void swap(CDRule ind1, CDRule ind2, int index) {

 // swap W
 double dtemp = ind1.getW(index);
 ind1.setW(index, ind2.getW(index));
 ind2.setW(index, dtemp);

 // swap O
 boolean btemp = ind1.getO(index);
 ind1.setO(index, ind2.getO(index));

Chapter 10

225

 ind2.setO(index, btemp);

 // swap V
 dtemp = ind1.getV(index);
 ind1.setV(index, ind2.getV(index));
 ind2.setV(index, dtemp);
 }

In this case, we have two rules that act as the parents and there is one switch, which is the
crossover between the rules, to mimic the possible causal mutation that can happen
in nature.

We next split the dataset into the training and testing parts to arrive at the last ingredient, that
is, the evaluator of the rules to find which one is suitable for surviving:

DatasetSplit split = new DatasetSplit(0.75);
. FitnessEvaluator<? super CDRule> evaluator = new
CDFitnessEvaluator(dataset, target, split);

SelectionStrategy<? super CDRule> selection = new
RouletteWheelSelection();

So, we have initialized all the elements: dataset and fitness function. It is time to use them in
an evolutionary engine and launch it:

EvolutionEngine<CDRule> engine =
 new SequentialEvolutionEngine<CDRule>(factory, pipeline,
evaluator, selection, RandomUtils.getRandom());

 engine.addEvolutionObserver(new EvolutionObserver<CDRule>() {
 @Override
 public void populationUpdate(PopulationData<? extends
CDRule> data) {
 log.info("Generation {}", data.getGenerationNumber());
 }
 });

Mahout also adds an EvolutionObserver event to print out the number of generations
every time we update the population in the logging framework. So at the end, we launch the
procedure both on the training as well as on the testing dataset:

Rule solution = engine.evolve(popSize, 1, new
GenerationCount(genCount));
Path output = new Path("output");
CDFitness bestTrainFit = CDMahoutEvaluator.evaluate(solution, target,
inpath, output, split);
split.setTraining(false);
CDFitness bestTestFit = CDMahoutEvaluator.evaluate(solution, target,
inpath, output, split);

Implementing the Genetic Algorithm in Mahout

226

Note that popSize is passed as the primary parameter to the engine to be sure that in
every case the procedure stops after a number of generations. It has been demonstrated
(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.243
1&rep=rep1&type=pdf) that increasing the number of generations does not improve
the best solution too much. On the contrary, having a very large initial population tends to
be a discriminant factor over the fitness function. This sounds reasonable because as the
population becomes larger, there is an increase in the probability that an important genetic
character is presented as one single individual.

Translating the biological term means that in our case, the larger the initial population
rules—that is, the more rules I have—the more chances the evolving algorithm has to select
an individual very close to the fitness factor.

We warn the reader that even if the GA is a powerful technique to find solutions to an
unknown problem without a lot of background analysis, the support in Mahout has been
officially discontinued. This means that you could use it at your own risk considering that
the Mahout implementation depends on a third-party implementation, which is no longer
supported in the current Mahout 0.8 version.

Still, there is an evolutionary algorithm of pure Mahout style implementation that is present
in Mahout 0.8. It is the EvolutionaryProcess class that is present in the org.apache.
mahout.ep package. The class is mainly used by the AdaptiveLogisticRegression
class that we have already seen in Chapter 5, Stock Market Forecasting with Mahout.

The EvolutionaryProcess class has been implemented starting from the paper by Ted
Dunning available online at http://arxiv.org/abs/0803.3838. The starting point is
always the same. The class deals with a population with an initial size and a function to be
optimized. The algorithm also takes an initial seed that is a state object. The constructor is
highlighted as follows:

 public EvolutionaryProcess(int threadCount, int populationSize,
State<T, U> seed) {
 this.populationSize = populationSize;
 setThreadCount(threadCount);
 initializePopulation(populationSize, seed);
 }

The MapReduce implementation comes in with the method paralledDo that runs in parallel
for all the members of the population of the same action. The method accepts the function to
be applied at every state of the population.

Chapter 10

227

There's more...
While you now know how to implement the evolutionary algorithm, please note that it is still
in the development state and its final inclusion into the Mahout framework is still a topic of
discussion in the Mahout community. We suggest that you take a look at the dev.mahout.
org forum to see suggestions and if you have the skills to propose an implementation. For the
coder who is looking for valuable GA solutions to his questions, the implementation can be
done using an older version of Mahout. As usual, using the abandoned code version could lead
to a bunch of potential problems. So, use it without any assurance of stability and compatibility.

Evolutionary algorithms demonstrate their power on the extraction of rules from an initial
raw dataset. Apart from the medical field, they have been demonstrated to be very
powerful in finding trading rules over the set of stock market index (see for reference
http://student.bus.olemiss.edu/files/conlon/others/Others/Temp/
Bus669_CompInfo/Chapter%205/Genetic%20Algorithm%20-%20An%20Example%20
from%20Finance/Allen%20Karjalainen%201999%20JFE.pdf) and bankrupt prediction
(http://www.sciencedirect.com/science/article/pii/S0957417402000519).

Index
Symbols
--categories command 101
--features command 101
--input command 101
-i parameter 76
-lnorm parameter 73, 76
-m: parameter 77
-nv parameter 73, 76
-o parameter 76
--output command 101
-ow: parameter 77
-ow command 34
--passes command 101
--predictors command 101
--rate command 101
--target command 101
--types command 101
-wt parameter 73, 76

A
adaptive logistic regression

using, in Java code 103-105
Adjacency/Affinity matrix (A) 177
Amazon EC2

URL 8
Area Under the Curve 102

B
basic recommender

coding 18-27
Item-based recommender 25
Slope One recommender 25
User-based recommender 25

C
Canopy clustering

about 115
cluster distance evaluation, coding 130-132
command-line-based Canopy

clustering 116-121
Key 121
used, from Java code 126-129
Value 121

categorical variable 100
classify method 114
Cloudera

URL 8
cluster distance evaluation

coding 130, 131
Collapsed Variation Bayes LDA

URL 202
collect method 196
command line

Complementary Naïve Bayes classifier, using
from 86, 87

EigenCuts, using from 133-137
K-means clustering, using 170-178
sequence files, creating from 30-34

command-line-based Canopy clustering
about 116-121
with command-line parameters 121-125

command-line parameters
lists 182

comma-separated value (CSV) 23, 56
Complementary Naïve Bayes classifier

coding 87-89
URL 89
using, from command line 86, 87
vs, Naïve Bayes classifier 89

230

confusion matrix 102, 103
CosineDistance

URL 162
CosineDistanceMeasure 161

D
data

exporting, from HDFS to RDBMS 59-62
importing, Sqoop API used 64-66
preparing, for logistic regression 92-97

datamarket
URL 27

data preparation 76
data testing 76
data training 76
Decision Forest classifier 76
dependent variable 100
Diagonal degree matrix (D) 177

E
EigenCuts

using, from command line 133-137
using, from Java code 138-142

export command 60
external datasource

importing, into HDFS 49-59

F
False negative rule 221
False positive rule 221
fList file 183
FP-Tree

about 197
URL 197

Frequent Pattern Mining
about 179-184
metrics, creating 184-189
using, from Java code 190-197

G
genetic algorithm (GA)

about 205
using 206-210
using, from Java code 215-227

using, over graphs 210-215
GitHub

URL 106, 206
Google Finance

URL 92
GOOG movements

predicting, logistic regression used 97-102
Great Internet Mersenne Prime

Search (GIMPS)
URL 8

GroupLens dataset 19

H
Hadoop

about 7
installing 8-13
URL 8

Hadoop Distributed File System. See HDFS
Hadoop MapReduce algorithm

mapping stage 30
reducing stage 30

HBase 53
HDFS

about 53
data, exporting from 59-62
external datasource, importing into 49-59

I
image segmentation

spectral clustering, using with 149-153
import command 58
independent variable 100
Init() method 188
installation, Hadoop 8-13
installation, Java 8-13
Item-based recommender 25

J
Java

installing 8-13
Java code

adaptive logistic regression, using
in 103-105

Canopy clustering, used from 126-129
EigenCuts, using from 138-142

231

Frequent Pattern Mining, using from 190-197
GA, using from 215-227
K-means clustering, using from 155-162
Naïve Bayes classifier, using from 81-86
sequence files, generating from 34-42
sequence files, reading from 42-46

Jester dataset
URL 27

K
K-means clustering

about 155
MapReduce, used 166-170
real dataset, used 162-166
using, from command line 170-178
using, from Java code 155-162

L
Laplacian matrix (L) 177
Latent Dirichlet Allocation (LDA)

about 198
used, for creating topics 198-203

logistic regression
data, preparing 92-97
used, for predicting GOOG

movements 97-102
using, on large-scale datasets 106-111

Logistic Regression classifier 76

M
Mahout

about 7
basic recommender, coding 18-27
Canopy clustering 115
Decision Forest classifier 76
Frequent Pattern Mining 179-184
K-means clustering 155
Logistic Regression classifier 76
Naïve Bayes classifier 76
sequence files, creating 30-34
sequence files, generating 34-42
sequence files, reading 42-46
setting up, for using GA 206-210
spectral clustering, using 149-153
stock market, forecasting 91

Mahout classifier
URL 68

Mahout text classifier
using 69-81

Mahout Version 0.8 25, 206
ManhattanDistanceMeasure 161
mappers 30
mapping stage 30
MapReduce

using, for K-means clustering 166-170
Matrix of eigenvectors of L (U) 177
Maven

setting up 13-18
URL 13

Maven Eclipse 18
metrics

creating, for Frequent Pattern
Mining 184-189

movies.dat file 19
mvn command 12, 37
mysql command 61

N
Naïve Bayes algorithm

data preparation 75
data testing 75
data training 75

Naïve Bayes classifier
about 68-76
Complementary Naïve Bayes classifier,

coding 87-89
Complementary Naïve Bayes classifier,

using 86, 87
using, from Java code 81-86
vs, Complementary Naïve Bayes classifier 89

National Institute of Statistics (NIS) 163
NetBeans

setting up 13-18
URL 14

n-grams 85
numerical variable 100

O
Oracle

URL 10

232

P
part-* file 183

R
Random Forest

about 112
used, for forecasting stock market

movement 112-114
ratings.csv file 22
ratings.dat file 19
raw data

similarity matrix, creating from 142-149
Raw data matrix (R) 176
RDBMS

data exporting to, from HDFS 59-62
Sqoop job, creating to deal with 62-64

README file 19
reducing stage 30

S
seqdirectory command

parameter 72
seqdumper command 41
sequence files

about 33
creating, from command line 30-34
generating, from code 35-42
generating, from Java code 34
reading, from Java code 42-46

SETI@Home
URL 8

Similarity matrix (S)
about 176
creating, from raw data 142-149

Slope One recommender 18, 25
spectral clustering

using, with image segmentation 149-153
Sqoop

about 48
URL 50, 59

Sqoop 1.4.2 version
URL 51

Sqoop API
used, for importing data 64-66

Sqoop job
creating, to deal with RDBMS 62-64

SquaredEuclideanDistanceMeasure 161
stock market

forecasting, with Mahout 91
stock market movement

forecasting, Random Forest used 112-114
Subversion (SVN) 13, 18
svn repository 18

T
TanimotoDistanceMeasure 161
testnn command-line option 85
textual variable 100
Travelling Salesman Problem (TSP) 210
True negative rule 221
True positive rule 221

U
UCI Machine Learning

URL 107
update method 195
User-based recommender 25
users.dat file 19

V
vertices 133

W
Watchmaker

URL 223
wdbc.data file 217
wdbc.infos file 217
WeightedDistanceMeasure 161
wget command 107

Thank you for buying

Apache Mahout Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Apache Tomcat 7 Essentials
ISBN: 978-1-84951-662-4 Paperback: 294 pages

Learn Apache Tomcat 7 step-by-step through a practical
approach, achieving a wide vision of enterprise
middleware along with building your own middleware
along with building your own middleware servers, and
administrating 24x7x365

1. Readymade solution for web technologies for
migration/hosting and supporting environment for
Tomcat 7

2. Tips, tricks, and best practices for web hosting
solution providers for Tomcat 7

3. Content designed with practical approach and
plenty of illustrations

Hadoop Real-World Solutions
Cookbook
ISBN: 978-1-84951-912-0 Paperback: 316 pages

Realistic, simple code examples to solve problems at
scale with Hadoop and related technologies

1. Solutions to common problems when working in
the Hadoop environment

2. Recipes for (un)loading data, analytics, and
troubleshooting

3. In depth code examples demonstrating various
analytic models, analytic solutions, and common
best practices

Please check www.PacktPub.com for information on our titles

Hadoop Beginner's Guide
ISBN: 978-1-84951-730-0 Paperback: 398 pages

Learn how to crunch big data to extract meaning from
the data avalanche

1. Learn tools and techniques that let you approach
big data with relish and not fear

2. Shows how to build a complete infrastructure to
handle your needs as your data grows

3. Hands-on examples in each chapter give the big
picture while also giving direct experience

Apache Solr 4 Cookbook
ISBN: 978-1-78216-132-5 Paperback: 328 pages

Over 100 recipes to make Apache Solr faster, more
reliable, and return better results

1. Learn how to make Apache Solr search faster,
more complete, and comprehensively scalable

2. Solve performance, setup, configuration, analysis,
and query problems in no time

3. Get to grips with, and master, the new exciting
features of Apache Solr 4

Please check www.PacktPub.com for information on our titles

 ~StormRG~

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Mahout is Not
So Difficult!
	Introduction
	Installing Java and Hadoop
	Setting up a Maven and NetBeans development environment
	Coding a basic recommender

	Chapter 2: Using Sequence
Files – When and Why?
	Introduction
	Creating sequence files from the
command line
	Generating sequence files from code
	Reading sequence files from code

	Chapter 3: Integrating Mahout with an External Datasource
	Introduction
	Importing an external datasource into HDFS
	Exporting data from HDFS to RDBMS
	Creating a Sqoop job to deal with RDBMS
	Importing data using Sqoop API

	Chapter 4: Implementing the Naϊve Bayes classifier
in Mahout
	Introduction
	Using the Mahout text classifier to demonstrate the basic use case
	Using the Naïve Bayes classifier from code
	Using Complementary Naïve Bayes from
the command line
	Coding the Complementary Naïve Bayes classifier

	Chapter 5: Stock Market Forecasting
with Mahout
	Introduction
	Preparing data for logistic regression
	Predicting GOOG movements using logistic regression
	Using adaptive logistic regression in Java code
	Using logistic regression on large-scale datasets
	Using Random Forest to forecast market movements

	Chapter 6: Canopy Clustering
in Mahout
	Introduction
	Command-line-based Canopy clustering
	Command-line-based Canopy clustering
with parameters
	Using Canopy clustering from the Java code
	Coding your own cluster distance evaluation

	Chapter 7: Spectral Clustering
in Mahout
	Introduction
	Using EigenCuts from the command line
	Using EigenCuts from Java code
	Creating a similarity matrix from raw data
	Using spectral clustering with image segmentation

	Chapter 8: K-means Clustering
	Introduction
	Using K-means clustering from Java code
	Clustering traffic accidents using K-means
	K-means clustering using MapReduce
	Using K-means clustering from the command line

	Chapter 9: Soft Computing
with Mahout
	Introduction
	Frequent Pattern Mining with Mahout
	Creating metrics for Frequent Pattern Mining
	Using Frequent Pattern Mining from
Java code
	Using LDA for creating topics

	Chapter 10: Implementing the Genetic Algorithm
in Mahout
	Introduction
	Setting up Mahout for using GA
	Using the genetic algorithm over graphs
	Using the genetic algorithm from Java code

	Index

